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The CompCert verified C compiler

Compiler built and proved by Xavier Leroy et al.

Slides largely inspired by Leroy’s own material
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critical_prog.ppc

High degree of assurance is required
• is the program critical_prog.ppc safe ?

2 options: 
• qualify the PPC program as if hand-written

(intensive testing, painful manual review...)

• qualify the program at the source level 
(static analysis, model checking, or 
program proof)

2nd option is preferred in practice
• can you trust your compiler ?
• this talk: apply formal verification 

techniques to the compiler itself !
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Miscompilation happens

4

Xuejun Yang Yang Chen Eric Eide John Regehr, Finding and Understanding Bugs 
in C Compilers, PLDI 2011

We created a tool that generates random C programs, and then spent 
two and a half years using it to find compiler bugs. [...]

Many of the bugs we found cause a compiler to emit incorrect code 
without any warning. 25 of the bugs we reported against GCC were 
classified as release-blocking. 

We found and reported hundreds of previously unknown bugs. [...]

Most of the bugs we found in GCC were in the middle end: the 
machine- independent optimizers.

Optimizing compilers rely on 
complex static analyses!
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The CompCert project
X. Leroy, S. Blazy et al.

Develop and prove correct a realistic compiler, usable for critical 
embedded software.
• Source language: a very large subset of C.
• Target language: PowerPC/ARM/x86 assembly.
• Generates reasonably compact and fast code
⇒ careful code generation; some optimisations.

Note: compiler written from scratch, along with its proof; not trying 
to prove an existing compiler 
(otherwise see Zdancewic et al’s Verified LLVM project).
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The formally verified part of the compiler

Compcert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachASM

side-effects out

of expressions

type elimination

loop simplifications

stack allocation
of variables

Optimizations: constant prop., CSE, tail calls

instruction

selection

CFG construction

expr. decomp.

register
allocation

linearization

of the CFG

spilling, reloading

calling conventions
layout of

stack frames

asm code

generation



Theorem transf_c_program_is_refinement:

8 p tp,

transf_c_program p = OK tp !
(8 beh , exec_C_program p beh ! not_wrong beh) !
(8 beh , exec_asm_program tp beh ! exec_C_program p beh).

7

After 50 000 lines of Coq and 4 person.years of effort

Formally verified in Coq

Behaviors beh = termination / divergence / going wrong
+ trace of I/O operations (syscalls, volatile accesses).
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Compiler verification patterns
(for each pass)

Verified transformation
transformation transformation

validator

Verified translation validation

= formally verified
= not verified

External solver with verified validation
transformation

checker

untrusted solver
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External solver with verified validation
Example: register allocation

register allocation

graph coloring
checker

graph coloring
heuristics

RTL LTL
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Verified translation validation 
Example: SSA generation (in CompCert SSA extension)

untrusted SSA generator

validator

RTL SSA
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Verified translation validation 
Example: SSA generation (in CompCert SSA extension)

untrusted SSA generator

validator

RTL SSA

The untrusted generator can rely on advanced graph algorithms  
as Lengauer and Tarjan’s dominator tree construction and frontier 
dominance computation.
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Verified translation validation 
Example: SSA generation (in CompCert SSA extension)

untrusted SSA generator

validator

RTL SSA

The untrusted generator can rely on advanced graph algorithms  
as Lengauer and Tarjan’s dominator tree construction and frontier 
dominance computation.
We prove the validator is complete with respect to this family of 
algorithms. 
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The whole CompCert compiler

C source AST C

Executable Assembly AST Asm

parsing, construction of an AST

type-checking, de-sugaring

assembling

linking

printing of

asm syntax

Type reconstruction

Graph coloring

Code linearization heuristics

Not proved
(hand-written in OCaml)

Proved in Coq
(extracted to OCaml)

Part of the TCB
Not part of the TCB

Verified com
piler
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Performance of generated code
(On a PowerPC G5 processor)

Performance of generated code
(On a PowerPC G5 processor)
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X. Leroy (INRIA) Verified squared POPL 2011 29 / 50
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The formal verification of realistic compilers is feasible.
(Within the limitations of contemporary proof assistants)

Much work remains:
• Shrinking the TCB

(e.g. verified parsing, validated assembling & linking).

• More optimizations
(see CompCert SSA).

• Front-ends for other languages
• Concurrency

(see Sevcik et al’s CompCert TSO and Appel and al’s Verified Software Toolchain).

• Connections with source-level verification
(ongoing french project on a verified C static analyzer)

Conclusions
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Formal Verification of a C Value Analysis
Sandrine Blazy, Vincent Laporte, Andre Maroneze, and David Pichardie,
to be presented at the 20th Static Analysis Symposium 2013

This work is part of the common Verasco project between

  Airbus

  INRIA Paris Rocquencourt (Gallium, Abstraction)

  INRIA Saclay (Toccata)

  Université Rennes I (Celtique)

  VERIMAG

http://verasco.imag.fr

http://verasco.imag.fr
http://verasco.imag.fr


Why a value analysis for CompCert ?

15

CompCert provides strong guarantees but only for programs 
with well behaved behaviors

Compiler Theorem

Analyser Theorem

A powerful and verified static analysis aims at proving that a 
program only exhibits well behaved behaviors

Theorem transf_c_program_is_refinement:
8 p tp,
transf_c_program p = OK tp !
(8 beh, exec_C_program p beh ! not_wrong beh) !
(8 beh, exec_asm_program tp beh ! exec_C_program p beh).

Theorem analyzer_is_correct:

8 p,

analyzer p = Success !
(8 beh, exec_C_program p beh ! not_wrong beh).
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RTLCminorC source Clight ASM

Platform specific backend
Mini-ML

Haskell

Concurrent 
Cminor

Which CompCert representation ?

C source?
• the place where we want to prove program safety
• but the most difficult place to start (not an IR but a source language)

RTL?
• the place where most CompCert static analyses take place
• but platform specific, flat expressions

Cminor?
• the last step before platform specific semantics
• designed to welcome forthcoming extensions
• but control flow still less uniform than in RTL (nested blocks and exits)



RTLCminorC source Clight ASM

Platform specific backend

CFG

Value 
Analysis

Mini-ML

Haskell

Concurrent 
Cminor

Which CompCert representation ?

CFG (Control Flow Graph)
• a new representation recently added by JH. Jourdan and Xavier 

Leroy
• Cminor expressions (i.e., side-effect free C expressions)
• control flow graphs with explicit program points
• control flow is restricted to simple unconditional and conditional 

jumps
• platform independent 



CFG syntax

Constants: c ::= n | f integer and floating-point constants
| addrsymbol(id, n) address of a symbol plus an o�set
| addrstack(n) stack pointer plus a given o�set

Expressions: a ::= id variable identifier
| c constant
| op1 a unary arithmetic operation
| a1 op2 a2 binary arithmetic operation
| a1? a2 : a3 conditional expression
| load(Ÿ, a) memory load

Unary op.: op1 ::= cast8unsigned 8-bit zero extension
| cast8signed 8-bit sign extension
| cast16unsigned 16-bit zero extension
| cast16signed 16-bit sign extension
| boolval 0 if null, 1 if non-null
| negint integer opposite
| notbool boolean negation
| notint bitwise complement

Binary op.: op2 ::= + | - | * | / | % arithmetic integer operators
| << | >> | & | | | ^ bitwise operators
| /u | %u | >>u unsigned operators
| cmp(b) integer signed comparisons
| cmpu(b) integer unsigned comparisons

Comparisons: b ::= < | <= | > | >= | == | != relational operators
Statements: i ::= skip(l) no operation (go to l)

| assign(id, a, l) assignment
| store(Ÿ, a, a, l) memory store
| if(e, ltrue, lfalse) if statement
| call(sig, id?, a, aú, l) function call
| return(a)? function return

Fig. 1. Abstract syntax of CFG

Platform specific backend

Value Analysis

Fig. 2. Integration of the value analysis in the CompCert toolchain
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A CFG program manipulate values

• Vint i with i an integer 

• Vptr b i with a memory block identifier and i an offset (integer)

• Vfloat f with f a floating-point number 

• Vundef (contents of uninitialized memory)

An integer is modelled with a dependent record

and a signed and an unsigned interpretation.

CFG semantics

Definition wordsize: nat := 32.

Definition modulus : Z := two_power_nat wordsize.

Definition half_modulus : Z := modulus / 2.

Definition max_unsigned : Z := modulus - 1.

Definition max_signed : Z := half_modulus - 1.

Definition min_signed : Z := - half_modulus.

Record int := { intval: Z; intrange: 0 <= intval < modulus }.



Inductive step: state ! trace ! state ! Prop :=

| step_skip:

8 s f sp pc e m pc’,

(fn_code f)!pc = Some(Iskip pc’) !
step (State s f sp pc e m)

E0 (State s f sp pc’ e m)

| step_assign:

8 s f sp pc e m id a pc’ v,

(fn_code f)!pc = Some(Iassign id a pc’) !
eval_expr ge sp e m a v !
step (State s f sp pc e m)

E0 (State s f sp pc’ (PTree.set id v e) m)

| step_store:

8 s f sp pc e m chunk addr src pc’ vaddr vsrc m’,

(fn_code f)!pc = Some(Istore chunk addr src pc’) !
eval_expr ge sp e m addr vaddr !
eval_expr ge sp e m src vsrc !
Mem.storev chunk m vaddr vsrc = Some m’ !
step (State s f sp pc e m)

E0 (State s f sp pc’ e m’)

[...] 21

A small step semantics step: state -> trace -> state -> Prop
models program execution (with a trace of behavior)

CFG semantics
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For all reachable states (according to step), for all all local variables that contain 
a value (Vint i) or (Vptr b i), the analyser computes a range for the integer i.

In the future, these inferred properties will be used to prove execution safety.

Abstractions currently handled

• interval abstraction for signed and unsigned interpretation of integers

• each local variable is abstracted by a pair of intervals.

But the main contribution of the current work is a set of Coq interfaces 

CFG Analyser



signed(i) 2 [�256, 255] ^ unsigned(i) 2 [512, 232 � 1]
signed(i) 2 [�256,�1] ^ unsigned(i) 2 [232 � 256, 232 � 1]
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Analyser Interfaces
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Reduced Product

Unsigned
Intervals

Signed
Intervals

Numeric Abstraction

• abstraction of a single integer value, 

• takes into account all the CompCert numerical operations

• reduced product: combine two abstractions for better precision
Example: 
if 
then 
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Analyser Interfaces
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Non Relational Env. Abstraction

Reduced Product

Unsigned
Intervals

Signed
Intervals

Numeric Environment Abstraction

• parameterised by an abstract notion of variable

• instantiated with a non-relational abstraction (each variable is given a numerical 
abstraction)

• interface ready for relational abstraction

Relational Abstract 
Domain
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Analyser Interfaces
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Local Memory Abstraction

Non Relational Env. Abstraction

Reduced Product

Unsigned
Intervals

Signed
Intervals

Memory Abstraction

• the only signature where the C memory is exposed

• currently implemented by mapping V with local variables

• ready for more ambitious abstractions where V is also mapped to memory cells
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Analyser Interfaces
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CFG analyzer

Local Memory Abstraction

Non Relational Env. Abstraction

Reduced Product

Unsigned
Intervals

Signed
Intervals

Generic analyzer

• parameterised by any memory abstraction

• CFG program are unstructured: need to build widening strategies on 
unstructured control flow graph
=> we let an external tool computes a post-fixpoint and check the result in Coq
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Conclusions

A first step toward a verified C verifier

• experimental evaluations show that our tool compare already well with 
Frama-C value analysis (more in the paper)

Next steps

• abstract interpretation a source level

• relational abstract domains

• abstract domains for floating-point numbers

Experiments on safety critical programs

• stress test the efficiency of the analyser

• add new abstract domains for specific program patterns
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