
Formal Verification of Loop Bound Estimation
for WCET Analysis ∗

Sandrine Blazy1, Andre Maroneze1, and David Pichardie2

1 IRISA - Université Rennes 1
2 Harvard University / INRIA

Abstract. Worst-case execution time (WCET) estimation tools are
complex pieces of software performing tasks such as computation on
control flow graphs (CFGs) and bound calculation. In this paper, we
present a formal verification (in Coq) of a loop bound estimation. It
relies on program slicing and bound calculation.
The work has been integrated into the CompCert verified C compiler.
Our verified analyses directly operate on non-structured CFGs. We ex-
tend the CompCert RTL intermediate language with a notion of loop
nesting (a.k.a. weak topological ordering on CFGs) that is useful for
reasoning on CFGs. The automatic extraction of our loop bound esti-
mation into OCaml yields a program with competitive results, obtained
from experiments on a reference benchmark for WCET bound estimation
tools.

1 Introduction

Avionics embedded software is developed according to international regulations.
Among them is the DO-178C, that has been published in 2012, thirty years
after its previous version DO-178B [19]. The DO-178C promotes the use of for-
mal methods for developing real-time safety-critical software rigorously. Airplane
manufacturers also follow their own development standards, and formal methods
were already used by the Airbus airplane manufacturer for developing safety-
critical software during DO-178B.

In this context, Airbus conducted experiments (see [5]) in order to compile
in a realistic environment an up-to-date flight control software with CompCert,
a formally verified compiler [16]. The CompCert compiler is a formally verified
optimizing compiler for the C language that has been specified, implemented
and proved using the Coq proof assistant. The compiler is exempt from miscom-
pilation issues: it is equipped with a proof of semantic preservation. This proof
is done once for all in Coq; it states that every compiled program behaves as
prescribed by the semantics of its source program.

Even if formal methods are promoted by avionics standards, adopting a for-
mally verified compiler is not self-evident in an industrial context. The quality of

∗ This work was supported by Agence Nationale de la Recherche, grant number ANR-
11-INSE-003 Verasco.

the code generated by the compiler is as important as the formal guarantees. For
real-time safety-critical software, a common practice is to measure this quality by
counting the size of the compiled code and by estimating its worst-case execution
time (WCET) [5]. Estimating WCET is a crucial step when developing real-time
software. It ensures that no run of a program will exceed its allowed execution
time. Computing the exact WCET of any program is not always possible and
simulations or static analyses are required to estimate it.

WCET estimation tools are complex pieces of software performing three main
tasks related to 1) control flow facts, 2) hardware features (e.g. cache misses)
and 3) estimate calculation; see [23] for a survey of techniques and tools. Sound
estimate calculation computes an upper bound of all execution times of a whole
program (i.e. a global bound) from the flow and timing information obtained
by the first two tasks (i.e. from local bounds). This paper focuses on the first
and third tasks: control flow facts that are useful for estimating loop bounds.
A loop bound is a static over-approximation of the number of times a loop is
executed during any execution of a given program. Estimating the execution
time of instructions on a given hardware is still an active field of research in the
WCET community and is out of the scope of this paper.

There are many studies on loop bound estimation in the literature. The
techniques range from pattern-matching (for identifying simple loop patterns),
modeling computations using affine equalities and inequalities (that are solved
by a decision procedure for Presburger arithmetic), data flow analysis, symbolic
execution to abstract interpretation. Basic techniques handle only simple loops;
advanced techniques handle various forms of nested loops. Some of these static
analysis techniques are well understood for several years now but their implemen-
tations in a real toolchain are still error prone, because these implementations
operate directly on unstructured CFGs originating from C programs. We focus
here on the SWEET loop bound analysis technique [9] that demonstrated a good
precision in the context of WCET analysis.

Compiling Airbus flight control software with CompCert has shown that the
quality of the compiled code is better than the quality of the compiler currently
used at Airbus [5]. The next step towards an industrial use of CompCert is to
qualify it according to DO-178C, and to strengthen the confidence in the results
of tools such as WCET estimation tools. In that perspective, combining the
CompCert verified compiler with a formal verification of a loop bound analysis
estimation for WCET analysis is valuable.

Our work is significant for many reasons.

– It constitutes the first machine-checked proof of a nontrivial loop bound
estimation algorithm operating over an intermediate language having the
same expressiveness as C. This proof combines two proof techniques, whole
formal verification using the Coq proof assistant and formal verification of
untrusted checkers.

– It provides a reference implementation of a tool combining independent tech-
niques: loop reconstruction in an unstructured CFG, program slicing and
loop bound calculation. Program slicing is required to improve the precision

of the analysis, by removing irrelevant variables that do not impact on the
number of iterations of a loop.

– A tool has been generated automatically from our formalization. Its perfor-
mances are close to those of reference tools for estimating loop bounds. In
this paper, we compare our tool with a reference tool called SWEET that
also relies on program slicing [13]. Our tool has been integrated into the
CompCert compiler, thus enabling the transmission of loop bound annota-
tions to other WCET tools.

All results presented in this paper have been mechanically verified using the
Coq proof assistant. The complete Coq development is available online at the fol-
lowing URL: http://www.irisa.fr/celtique/ext/loopbound. Consequently,
the paper only sketches the proofs of some of its results; the reader is referred
to the Coq development for the full proofs.

The remainder of this paper is organized as follows. First, Section 2 introduces
our loop bound estimation. Then, Section 3 defines an abstract notion of loop
nesting. Section 4 explains the formal verification of program slicing. Section 5
is devoted to the formal verification of the loop bound calculation. Section 6
describes the experimental evaluation of our implementation. Related work is
discussed in Section 7, followed by concluding remarks.

2 A Loop Bound Estimation for WCET Analysis

First, this section gives an overview of our loop bound estimation and explains
informally its key features. The loop bound estimation operates over a language
that is introduced in the second part of this section. Then, the main theorems
stating the soundness of our loop bound estimation are explained.

2.1 Overview

Fig. 1 shows the user’s view of our analysis. The CompCert compiler consists
in many intermediate languages and passes. It provides a general mechanism to
attach annotations to program points. Annotations are transported throughout
compilation, all the way to the generated assembly code [16]. Our loop bound
analysis computes bounds on the RTL intermediate representation and attaches
them to these annotations. Moreover, thanks to the semantic preservation of
the CompCert compiler, we obtain semantic guarantees about these bounds in
terms of the semantics of the assembly code generated by the compiler: each
annotation in the assembly code is attached with a provably correct bound.

Classically, bounding a loop consists in estimating by static analysis how
many times at most the loop will be executed. In our setting, the estimation
of the loop bound is calculated by approximating the variation of the sizes of
the domains of some selected variables (we call them interesting variables), that
influence the loop bound estimation. If the loop is not nested into another loop,
the estimation of the loop bound is the product of all the sizes of the domains

http://www.irisa.fr/celtique/ext/loopbound

Program
Slicing

Bound
Calculation

Loop
Extraction

ASMC

CompCert Verified Compiler
RTL

Loop Bound
Estimation

Value
Analysis

+
bounds

+
bounds

+
bounds

Fig. 1. Main architecture of our loop bound analysis.

related to interesting variables. If all variables are considered as interesting, then
we may obtain a bad over-approximation of the loop bound. If some interesting
variables are forgotten, then we obtain an incorrect approximation. When the
loop is nested, the local bounds of all the loop bounds involved in the nesting
are estimated separately as if there was no nesting, and the global estimation of
the innermost loop combines in a product the estimations of local bounds.

There are several challenges for estimating a loop bound.
1. The loop structure of the program must be reconstructed from the unstruc-

tured graph representation of the program. Efficient loop extraction algo-
rithms have been developed for graphs but directly reasoning on them in a
semantic proof is challenging.

2. An analysis is required to select the interesting variables. It is performed in
two steps: program slicing and computation of locally modified variables in
loop bodies. First, the program is sliced w.r.t. each loop condition, as de-
scribed in [9]. There are as many slices as loops and each slice is an executable
program. Secondly, interesting variables are selected among the variables be-
longing to the slice. Due to nested loops, a computation is performed to select
the interesting variables of the current nested loop. Given such a loop L, the
interesting variables of L are live variables at the entry of L that may be
both modified and used in the body of L. This computation is simpler than
program slicing, but complementary to program slicing. It can be seen as a
slicing of the program restricted to one of its nested loops.

3. A final calculation is required to take into account nested loops and collect
all the local estimations of bounds involved in nestings.

A last challenge is related to the value analysis that is required to estimate
at any program point the valuation of all program variables. A value analysis is
usually based on abstract interpretation and uses widening and narrowing oper-
ators to speed up fixpoint resolution. The formal verification of a value analysis
based on abstract interpretation and operating over a real-world language raises
many challenging verification problems that are detailed in [7].

For the purpose of illustrating our approach, a succinct example program P

is presented in Fig. 2, extracted from a LU decomposition algorithm. In P, there
are 2 annotations, written as 2 calls to a specific built-in function and used here
to mark loop entries.3 They are attached to program points 4 and 6 and will
be transported throughout compilation. The CompCert compiler will place the
comment “loop1” (resp. “loop2”) at the exact program point corresponding to
the program point 4 (resp. 6) in the assembly code. The right part of the figure
shows the CFG of the program and its loop nestings that will be presented in
Section 3. First, the program P at the left of the figure is sliced twice as there
are two loops in P. The third (resp. fourth) column shows the slice w.r.t. the
first (resp. second) loop of P.

The first slice consists of the statements that contribute to the number of ex-
ecutions reaching program point 4. It includes the variables used in the loop exit
condition (i.e. at program point 15). Intuitively, we slice w.r.t. a loop condition,
but we could also slice w.r.t. any other program point of the slice. To facilitate
our proofs (i.e. the reasoning on graphs), we choose to slice w.r.t. loop headers
(i.e. loop entries, see Section 3) and show that this amounts to slicing w.r.t. loop
conditions. It is then easy to bound the loop of the first slice. At program point
4, the value analysis states that the values of n and i belong to respectively [5; 5]
(size 1) and [0; 5] (size 6). Thus, the condition of this loop is evaluated 1 ∗ 6 = 6
times and the bound of this loop is estimated to 6. This result is written as a
comment in the corresponding loop, for illustration purposes.

The second slice of Fig. 2 is related to the loop entry at program point 6
(i.e. the second loop of P) and includes variables j and n used in the loop exit
condition at program point 12. Because j is defined at program point 5, in the
slice, the second loop is still nested in the first one. Among the variables in
the second slice, only j is an interesting variable (only j is modified in the loop
body). The local bound of the second loop is 6, that is estimated from the second
slice as the size of the domain of j (that is the size of [0; 5], the interval estimated
by the value analysis). Note that if the value of i was modified in the second
loop, then the local bound would have been estimated as the product between
6 and the size of the domain of i.

The last step is the calculation of the global bound of the innermost loop,
from the local bounds. The most widely used technique consists in translating
the CFG (and some extra information about the control flow) into an ILP (i.e.
integer linear program) [23]. The goal function of the ILP solver expresses the
total execution time to be maximized. Here, we do not rely on an ILP solver
but we simply compute the product of both previous local bounds which may
over-approximate the exact bound in some cases. In Fig. 2, the global bound is
estimated to the exact bound 6 ∗ 6 = 36.

This example shows that program slicing is complementary to the computa-
tion of modified variables. For instance, only the program slicing can eliminate
all statements related to w, since w would have been considered as an interesting
variable if it had not been sliced. Moreover, the computation of modified vari-

3 Annotations can be written manually by the user or generated by an untrusted tool.

Program P
Slice of P

w.r.t. 1st loop (at 4)
Slice of P

w.r.t. 2nd loop (at 6)

1 n = 5; n = 5; n = 5;

2 i = 0; i = 0; i = 0;

3 w = 0.0;

4 do { _annot("loop1"); do { _annot("loop1"); do { _annot("loop1");

5 j = 0; /* bound=6 */ j = 0;

6 do { _annot("loop2"); do { _annot("loop2");

7 a[i][j] = i+1+j+1; /* bound=6 */

8 if (i == j)

9 a[i][j] *= 5.0;

10 w += a[i][j];

11 j++; j++;

12 } while (j <= n); } while (j <= n);

13 b[i] = w;

14 i++; i++; i++;

15 } while (i <= n); } while (i <= n); } while (i <= n);

0

4

6

Fig. 2. An example program, its computed slices and its loop nestings.

ables eliminates non-interesting variables belonging to a slice (e.g. the variable
i) that would make the bound estimation less precise.

2.2 RTL Semantics with Counters

Instead of reasoning at the assembly level, our loop bound estimation operates
on the RTL intermediate language, mainly because RTL programs are repre-
sented by their control flow graph (CFG), with explicit program points. RTL
stands for “Register Transfer Language”. Among the intermediate languages of
CompCert, RTL is the most adapted for representing gotos and CFGs. More-
over, the compiler optimizations are also performed at the RTL level and we
can benefit from them (e.g. common subexpression elimination). Thus, our loop
bound estimation operates at the RTL level and extends the RTL representa-
tion of programs with a notion of loop nesting [10]. RTL is just an intermediate
representation in our tool: our final theorem is related to assembly code thanks
to the correctness of the CompCert compiler, that states that any RTL program
behaves as its corresponding assembly program.

Real-time systems only use a restricted form of programming, where each
program consists in a main reacting loop triggering tasks that always terminate
and where recursion is not allowed [23]. Hence, in our theorems, we consider only
finite executions of programs, even if the CompCert semantics model diverging
executions. In the same way, functions are inlined before bounding loops. This
is how WCET estimation tools proceed to perform interprocedural analyses.

The semantic preservation theorem of the CompCert compiler requires the
definition of formal semantics for all the languages of the compiler. Each of
these operational semantics is defined in small-step style as a transition relation
between execution states. We use σ to denote execution states in the RTL se-
mantics. Among the components of a tuple σ are the current program point l
(i.e. a CFG vertex) and an environment E mapping program variables to values.
We have instrumented the RTL semantics by counting the number of times each
program point is reached. We have thus added counters (i.e. mapping program
points to natural numbers) in execution states. We need two kinds of counters:
a global counter cglob such that cglob(l) is incremented each time the program
point l is reached during program execution, and a local counter cloc modeling
the execution of nested loops. We slice n nested loops into n separate loops, and
we need local counters to count for each sliced loop how many times each vertex
of the loop is reached. Thus, local counters are incremented as global counters,
except at loop exits where they are reset to zero. Loop exits depend on loop
nestings and are defined in Section 3.

We use σ.l, σ.E, σ.cglob and σ.cloc to denote label, environment and counters
of a program state σ, respectively. We use dom(σ.E) to denote the domain of
the environment σ.E (i.e. the set of its variables). We write P ⇓ cglob to express
that the execution of program P terminates with the final counters cglob. In this
paper, we omit the value returned by the main function of the program, even
if it is part of the program behavior in our development. We use reach(P) to
denote the set of states belonging to the execution trace of P .

2.3 Soundness of Loop Bound Estimation

We prove two soundness theorems for our analysis. The first main theorem states
the soundness of the loop bound estimation at the RTL level. For any RTL
program P and any program point l of P , the bound estimation at l is a correct
estimation of the counter computed by the instrumented semantics at l.

Theorem 1 (Main theorem). Let P be a RTL program such that P ⇓ cglob
and l a program point of P . Then, we have cglob(l) ≤ bound(P)(l).

[Coq Proof]4

Note that this theorem (and the following one) only gives estimations on
finite executions. This limitation is inherited from the SWEET methodology we
formalize here. A termination analysis (e.g. see [8]) may be required here but
formally verifying it is out of the scope of this paper.

The second main theorem states the start-to-end (i.e. from C to assembly)
property of our enhanced compiler, that generates an executable code as well as
a table of bounds for every program point where an annotation is attached. The
CompCert semantics emit a special event each time such a point is reached during
program execution. Then, we characterize bounds as an over-approximation of
the number of occurrences of such an event in the execution trace of assembly

4 This is a direct link to the web page showing the corresponding Coq theorem.

http://www.irisa.fr/celtique/ext/loopbound/html/GlobalBounds_proof.html#bound_correct

programs. In other words, this theorem states that the number of executions we
estimate for a given program point at the RTL level is still true at the assembly
level.

Theorem 2 (Start-to-end correctness). Let PC be a source C program, free
of runtime errors. Let PAsm and bound table be the result of the compilation
of PC. Then, for any finite execution PAsm that produces a trace of events tr

and any annotation label al, we have #tr↓al ≤ bound table[al], where #tr↓al
represents the number of occurrences of the event attached to al in tr.

[Coq Proof]

This theorem is a consequence of the main theorem and the CompCert theorems
about preservation of annotation events trough compilation. As our loop bound
estimation relies on three main tasks (loop reconstruction, program slicing and
local bound calculation), the proof of the first main theorem follows from the
proof of each of these tasks, that are detailed in the three following sections.

Example 1. In program P of Fig. 2, our enhanced compiler will generate a table
that associates the string “loop1” (resp. “loop2”) to the bound 6 (resp. 36).

Our proofs follow the methodology chosen to formally verify the CompCert
compiler [16]. Most of the compiler passes are written and proved in Coq. Other
passes of the compiler (e.g. the register allocation and some optimizations such
as software pipelining) are not written in Coq but validated a posteriori. We
have implemented efficiently in OCaml some algorithms and we have formally
verified (in Coq) a checker that validates a posteriori the untrusted results of the
OCaml program. More precisely, we have validated a posteriori two algorithms,
an efficient algorithm for computing loop nestings from a CFG, and the control
and data dependence analysis of the slicer.

3 Loop Nestings

Reasoning about loops on a CFG may require complex proofs in graph theory.
The 3 tasks of our tool manipulate CFGs that are equipped with loop nestings.
Loop nestings represent a hierarchical view of the CFG loops. First, this section
specifies loop nestings. Then, it explains how they are built. In Section 2.1, we
mentioned that the user provides marks (e.g. see the program P in Fig. 2) to
indicate the program points that are annotated in the final assembly program.
The information we compute in Section 3 does not use these marks at all.

3.1 Axiomatization of Loop Nestings

Our axiomatization of loop nestings (that we call nestings in the sequel of this
paper) is given in Fig. 3, where the abstract type for nestings is called t. The
right part of the previous example given in Fig. 2 shows the three nested nestings
associated with program P. Given a nesting s, vertices(s) denotes the list of

http://www.irisa.fr/celtique/ext/loopbound/html/Main.html#transf_c_program_with_bound_correct

its vertices. A vertex v belongs to a nesting s (notation v ∈ s) if it belongs to the
list of its vertices. In the same way, we define an inclusion relation ⊆ between
nestings as a set inclusion between the sets of vertices of the nestings.

Each RTL function f must be equipped with a family of nestings. The type
called family(f) describes in a Coq record the elements of such a family. It con-
tains four functions nesting, header, parent and elements and eleven proper-
ties about these functions. The record type is itself parameterized by the function
f because some properties directly mention it.

Each vertex v of the CFG belongs to its nesting nesting(v) (P1) that is the
least nesting containing v (P2). Each nesting s is given a header vertex header(s)
in f (P3) such that its nesting is s itself (P4). It implies that header(s) ∈
s. The header of a nesting represents the loop entry. For instance, in Fig. 2,
header(11) = 6. The hierarchy of nestings is described by a map called parent

returning the parent nesting of a nesting. The parent nesting parent(s) of a
nesting s contains s itself (P5) and is included in any (strict) sub-nesting of s
(P6).5 At last, the family contains a list called elements of all its nestings (P7).

Only three properties relate nestings and CFG edges. (P8) ensures that
header(s) is the unique entry of s and that the only incoming edges start from
parent(s). (P9) ensures that each CFG cycle is cut by a header, except for loops
starting at headers which are either totally included in their nesting or that are
cut by the header of the parent nesting (P10).

The last property (P11) describes the specific role of the CFG entry point.
In our semantics, local counters are reset at loop exits. We use nestings to

define precisely loop exits in the semantics. Exiting the loop of a vertex n0 means
traversing an edge n 7→ n′ such that n ∈ nesting(n0) but n′ 6∈ nesting(n0).

3.2 Computation of Loop Nestings

Various algorithms exist in the literature to compute nestings. We follow the
Bourdoncle algorithm [10], a variation of the famous Tarjan algorithm for com-
puting strongly connected components. We chose this algorithm because it is
also useful for our value analysis. The worst-case complexity of this algorithm
is D × E where D is the maximum depth of the graph vertices and E is the
number of edges. The algorithm gives a weak topological ordering of the CFG.

We have implemented in OCaml our algorithm, and we have formally verified
a checker that validates a posteriori the untrusted results of the algorithm. We
use the nesting ordering to efficiently check the properties (P9) and (P10) about
cycles. Our verified checker takes as input a nesting of the following type.

Inductive nesting := I(v : vertex) | L(h : vertex)(l : list nesting)

An element of type nesting is either a single vertex (I v) that directly belongs
to the current nesting or a new nesting (L h l) with h a header vertex and l a
list of sub-elements. The verified checker outputs a record of type (family f) or
aborts if the verification fails. Let us note that our checker could also validate
any other algorithm (e.g. [17]) for computing loop nestings.

5 The functions header, nesting and parent will be used in the lemmas of Section 5.

Parameter t : Type
Parameter vertices : t→ list node

Notation v ∈ s := v ∈list vertices(s)
Notation s1 ⊆ s2 := vertices(s1) ⊆set vertices(s2)

Record family(f : function) := {
(f1) nesting : vertex→ t
(f2) header : t→ vertex

(f3) parent : t→ t
(f4) elements : list t
(P1) in nesting : ∀v, f In(v, f)⇒ v ∈ nesting(v)
(P2) nesting least : ∀s ∈list elements, ∀v ∈ s, nesting(v) ⊆ s
(P3) header f In : ∀s ∈list elements, f In(header(s), f)
(P4) nesting header : ∀s ∈list elements, nesting(header(s)) = s
(P5) incl in parent : ∀s ∈list elements, s ⊆ parent(s)
(P6) parent least : ∀s s′ ∈list elements, s ⊆ s′ ⇒ s = s′ ∨ parent(s) ⊆ s′

(P7) nesting in elements : ∀v, nesting(v) ∈list elements

(P8) enter in nesting at header only : ∀v v′, is succ vertex(f, v, v′)⇒
v /∈ nesting(v′)⇒ v′ = header(nesting(v′)) ∧ parent(nesting(v′)) = nesting(v)

(P9) cycle at not header : ∀l 6= nil,∀ v, v 6= header(nesting(v))⇒
path(f, v, l, v)⇒ header(nesting(v)) ∈list l

(P10) cycle at header : ∀l 6= nil,∀ v, v = header(nesting(v))⇒ path(f, v, l, v)⇒
header(parent(nesting(v))) ∈list l ∨ (∀v′ ∈list l, v

′ ∈ nesting(v))
(P11) in nesting root : ∀s ∈list elements, fn entrypoint(f) ∈ s⇒

fn entrypoint(f) = header(s)}.

Fig. 3. Axiomatization of loop nestings

4 Program Slicing

As shown previously in Fig.2, each local bound is estimated from a slice of
the program. Precise slicing is an important step in this methodology because
it reduces the number of variables we have to consider when estimating the
sizes of the domains of the variables that are used in a loop. First, this section
presents the two soundness theorems we proved on our program slicer. Secondly,
it describes the a posteriori validation of our program slicing. Then, it explains
the matching we define between execution states in order to prove the soundness.

4.1 Soundness Theorems

Given a program point ls of a program P , slicing P w.r.t. the slicing criterion ls
means slicing P w.r.t. all the variables that are used at ls. Two theorems state
the soundness of program slicing. The first one is the soundness of program
slicing w.r.t. the local counters6. It states that for any terminating program P
and slicing criterion ls, a bound of the local counter at ls of a sliced program P ′

6 As explained in Section 2, only local counters are considered in theorems related to
sliced programs.

is also a bound of the local counter at ls of the original program P . As we will
show in Section 5, this is the key property we use to estimate local bounds on
P ′ instead of P .

Theorem 3. Let P be a program and ls a program point of P . Let P ′ be the
sliced program w.r.t. the slicing criterion ls. If M is a bound of every reachable
local counter at ls in P ′: ∀ σ ∈ reach(P ′), σ.cloc(ls) ≤ M then M is also a bound
of every reachable local counter at ls in P : ∀σ ∈ reach(P), σ.cloc(ls) ≤ M .

[Coq Proof]

The second theorem states that if a program P terminates, then its sliced
program P ′ also terminates. This theorem is needed to prove our main theorem
related to bound calculation (see Section 5.3). Let us note that this property is
not obvious. There are slicing algorithms [20] that transform terminating pro-
grams into diverging programs, thus program slicing does not always preserve
the termination of programs.

Theorem 4. Let P be a program and ls a program point of P . Let P ′ be the
sliced program w.r.t. the slicing criterion ls. If P terminates, then P ′ terminates.

[Coq Proof]

The standard approach to prove both theorems is to formalize each compo-
nent of the slicer: data dependencies, control dependencies and post-dominators.
Moreover, we need an executable program slicer relying on efficient data struc-
tures such as postdominator trees and program dependence graphs. In order to
facilitate the proof and avoid intensive reasoning on these data structures, we
formally verify a checker that validates a posteriori the untrusted results of a
slicer written in OCaml. Another advantage of this approach is that our checker
can be reused to verify other program slicers.

4.2 A Posteriori Validation of Program Slicing

We implement an untrusted program slicer that, given a program P and a slicing
criterion ls yields a slice SL(ls) giving the set of vertices preserved by the slicing
of P w.r.t. ls. For any vertex outside this set we transform7 the corresponding
statement (resp. condition) into a skip statement (resp. a constant condition).

Alone, this set SL(ls) is not enough for an efficient a posteriori validation.
Because we need to find information that can guide the validator, we reuse the
notion of relevant variables and next observable vertices that are used in paper-
and-pencil proofs of program slicing [18]. A set RV(l) of relevant variables at
program point l contains the variables whose values are preserved by the slicing
and influence the computation in SL(ls). Given a vertex l in SL(ls), NObs(l)
is defined as the closest vertex (i.e. when following a path of CFG edges) to
l belonging to SL(ls); DObs(l) is the distance (i.e. the number of edges of the

7 Slicing is often described as a program transformation that removes statements, but
for the purpose of our soundness proof we need to preserve the CFG structure.

http://www.irisa.fr/celtique/ext/loopbound/html/WCETSlice.html#program_slicing_is_sound
http://www.irisa.fr/celtique/ext/loopbound/html/WCETSlice.html#slicing_preserves_termination

SL
Program P

(sliced at 6)
Relevant

Variables (RV)
Next Observable

(NObs)
Distance to Next

Observable (DObs)

1 n = 5; ∅ 1 0

2 i = 0; {n} 2 0

3 skip; {n, i} 4 1

4 do { __annot("loop1"); {n, i} 4 0

5 j = 0; {n, i} 5 0

6 do { __annot("loop2"); {n, i, j} 6 0

7 skip; {n, i, j} 11 3

8 if (false) {n, i, j} 11 2

9 skip; {n, i, j} 11 2

10 skip; {n, i, j} 11 1

11 j++; {n, i, j} 11 0

12 } while (j <= n); {n, i, j} 12 0

13 skip; {n, i} 14 1

14 i++; {n, i} 14 0

15 } while (i <= n); {n, i} 15 0

Fig. 4. Relevant variables and next observable vertices for the program P in Fig. 2,
sliced at vertex 6, shown with skip statements and constant conditions at sliced vertices.

shortest path) from l to NObs(l). This distance is used in the proof we detail in
Appendix A. It is used to follow the shortest path in the sliced program, and
thus select the next statement to execute while avoiding possibly infinite loops.

Fig. 4 shows these sets for each program point of the second slice of the
example program of Fig. 2. This slice is written in grey; it is defined as the set
SL(6) = {1; 2; 4; 5; 6; 11; 12; 14; 15} consisting of the program points without skip
statement or constant condition. As the variable j is initialized at program point
5, and its last use is at program point 12, j is relevant in program points 6 to
12. Vertices 7 and 8 do not belong to the slice; NObs(7) (resp. NObs(8)) gives the
closest vertex of 7 (resp. 8) that belongs to SL(6). Thus, NObs(7) = NObs(8) = 11.
DObs(7) is 3, the length of the shortest path from 7 to 11; DObs(8) is 2.

We implement a checker taking as input the results of an untrusted slicer
and performing some coherence checks to ensure mainly the properties that are
described in Fig. 5. They axiomatize the notions of slice, relevant variables and
observable vertices. They are checked all at once. The figure shows only the main
properties; similar properties taking into account memory accesses are ensured
in our Coq development. In Fig. 5, ls denotes a vertex that is a slicing criterion.
We use n 7→ s to denote a vertex n and its successor s. We use def(n) (resp.
use(n)) to denote the set of defined (resp. used) variables for a program point
n. Property (C1) states that a slice criterion belongs to its slice.

Fig. 5 shows that RV(l) and SL(ls) are mutually dependent sets: RV(l) contains
the variables that are defined in SL(ls) and whose value may affect the execu-
tion of the statements in SL(ls), while SL(ls) contains every statement assigning
variables in RV(l). This is expressed by properties (C2) to (C4) that characterize
a backward data-flow algorithm. Property (C2) states that any variable that is

(C1) ls ∈ SL(ls)
(C2) If n ∈ SL(ls), then use(n) ⊆ RV(n)
(C3) If n 7→ s, then RV(s)\def(n) ⊆ RV(n)
(C4) If def(n) ∩ RV(n) 6= ∅, then n ∈ SL(ls)
(C5) n ∈ SL(ls) ⇐⇒ NObs(n) = n
(C6) If n /∈ SL(ls) ∧ NObs(n) = o, then ∀s, n 7→ s⇒ NObs(s) = o
(C7) If n /∈ dom(NObs) ∧ n 7→ s, then s /∈ dom(NObs)
(C8) If n /∈ SL(ls) ∧ DObs(n) = d, then ∀s, n 7→ s⇒ DObs(s) ≥ d− 1
(C9) If n /∈ SL(ls) ∧ DObs(n) = d, then ∃s, n 7→ s ∧ DObs(s) = d− 1

Fig. 5. Main formally verified properties related to slices, relevant variables, next ob-
servable vertices and distances

used in a slice must be a relevant variable. Property (C3) expresses the back-
ward propagation from s to n of relevant variables that are not defined at n. The
backward propagation ends at vertices where variables are defined. (C4) states
that any vertex n defining a relevant variable belongs to the slice.

The following properties axiomatize next observable vertices and their dis-
tance. Property (C5) states that any vertex of a slice is its own observable vertex.
Property (C6) states that the observable vertex o of a vertex n that is not in
the slice is the same for all successors of n. The companion property (C7) is
related to vertices having no next observable vertex: none of their successors has
a next observable vertex. Properties (C8) and (C9) are related to the distance
of next observable vertices. Given a vertex n that is not in the slice such that
DObs(n) = d, they state that at least one of the successors of n has a distance
equal to d− 1; some successors may have a greater distance.

Our checker is efficient and verifies the whole properties in a single CFG
traversal. Indeed, while [18] introduce relevant variables and sets of observable
vertices for the purpose of their paper-and-pencil proof, they are not concerned
with computation on this information and state them in terms of paths in the
CFG. We have adapted these properties by rewriting them into local properties
enabling an efficient checker. Our local properties can be checked just by looking
at each vertex and its immediate successors. Moreover, our checker is complete:
Ranganath et al. [18] show that standard slicing algorithms based on control
and data dependencies always satisfy constraints (C1) to (C9).

4.3 Proof by Simulation

To prove the soundness of program slicing, the major difficulty is to relate states
occurring during the execution of an initial program P and that of each of its
slices P ′. To account for these differences between the initial program and each of
its slices, we define a matching relation between execution states, written σ ∼ σ′

and defined in Fig. 6. To simplify the figure, execution states are considered as
triples (program point l, environment E, counters c)8; other state components

8 c denotes either a local or a global counter.

l ∈ SL(ls) E 'RV (l) E
′ c(ls) = c′(ls)

(l, E, c) ∼ (l, E′, c′)
(R1)

l /∈ SL(ls) l′ /∈ SL(ls) NObs(l) = NObs(l′) E 'RV (l) E
′ c(ls) = c′(ls)

(l, E, c) ∼ (l′, E′, c′)
(R2)

l /∈ dom(NObs) c(ls) = c′(ls)

(l, E, c) ∼ (lexit, E′, c′)
(R3)

Fig. 6. Matching between execution states of a program and one of its slices SL(ls)

are omitted. Given a program point l, we use 'RV (l) to denote the equivalence
relation between two environments restricted to relevant variables at l. We use
lexit to denote the (unique) exit vertex of the program.

All the rules express that the counters at the slicing criterion must be the
same. More constraints on the states are expressed in the rules. The first rule
matches intuitively an execution state of the initial program with an execution
state of the sliced program when the program point l is the same in both states
and it belongs to the slice SL(ls): both states match when the relevant variables
have the same values in both environments E and E′.

The second rule matches two states such that neither of their program points
l and l′ belong to the slice SL(ls), but some of their successors belong to SL(ls).
These successors are precisely identified using next observable vertices. Both
states match when the next observable vertex at l and l′ is the same and, as in
the first rule, the relevant variables have the same values in both environments
E and E′. The third rule is required to ensure the termination of the sliced
program. It matches any state of the initial program such that its program point
l exited from the slice (i.e. there is no next observable at l) with the state of the
sliced program at program point lexit.

These rules allow us to prove Lemma 1, which states that assuming the
constraints of Fig. 5, the sliced program executes in ways that simulate the
execution of the corresponding initial program. The proof by simulation of this
lemma is detailed in Appendix A. We use → to denote a single execution step,
and →∗ to denote the reflexive transitive closure of →.

Lemma 1. Let P be a program, ls a program point of P , and let the result of
slicing P w.r.t. ls be (P ′, SL(ls), RV, NObs, DObs). Assume (SL(ls), RV, NObs, DObs)
satisfy the constraints (C1) to (C9). ∀σ1, σ2 ∈ reach(P), σ′1 ∈ reach(P ′), if
σ1 → σ2 and σ1 ∼ σ′1, there exists σ′2 such that σ′1 →∗ σ′2 and σ2 ∼ σ′2.

[Coq Proof]

5 Bound Calculation

This section explains how we combine program slicing, value analysis and loop
nestings to build a safe over-approximation of program counters. This calcula-
tion called bound is based on the 3 steps we described previously. Each step

http://www.irisa.fr/celtique/ext/loopbound/html/WCETSlice.html#transf_step_correct

is proved by a lemma that is explained in this section. Each proof of a lemma
requires to strengthen the lemma into a non-trivial inductive property. We give
in Appendix B an account of the formal arguments we have machine-checked.

5.1 The header counter dominates the other counters in the nesting

The nesting header plays an important role for bound calculation since its
counter dominates the counters of the other program points in the nesting (i.e.
every path from the start to these program points must go through the nesting
header). This property is expressed by the following lemma.

Lemma 2. For any reachable state σ ∈ reach(P) and any vertex l of P , we
have: σ.cglob(l) ≤ σ.cglob(header(nesting(l))). [Coq Proof]

We have proved a similar property for the local counter cloc. Thanks to this
lemma, the bounds of a vertex l can be computed by simply computing a bound
for its header: bound(P)(l) = bound(P)(header(nesting(l))).

5.2 Relating global and local counters

To compute a bound for the global counter of a nesting header lh, we need two
bounds: a global bound of the global counter of the parent nesting and a local
bound of the local counter of the current header. The following lemma states how
the local and global counters at lh are related. We assume the current header
differs from the entry point of the program. The latter is executed only once
(after a normalization of RTL control flow graphs).

Lemma 3. Let lh be a nesting header and lp the header of its parent nest-
ing, i.e. lp = header(parent(nesting(lh))). Let M be a bound for the lo-
cal counter of lh: ∀σ ∈ reach(P), σ.cloc(lh) ≤ M . Then, we have: ∀σ ∈
reach(P), σ.cglob(lh) ≤ M × σ.cglob(lp)

[Coq Proof]

This lemma allows us to program the bound computation of lh by a recursive
call to the bound of its parent followed by a multiplication by the estimation of
the local counter in lh. This local counter is called loc bound(P, lh) and defined
in the next subsection.

bound(P)(lh) = bound(P)(header(parent(nesting(lh))))× loc bound(P, lh)

5.3 Bounding local counters

Our value analysis (called value) computes, at each program point of a pro-
gram, an over-approximation of the domain size of each variable, i.e. the esti-
mated values (represented by an interval) of the program variables. Thus, given
a program P and a vertex l, value(P)(l) yields a map such that for any variable
x, value(P)(l)(x) is an interval [a, b] representing a conservative range of the

http://www.irisa.fr/celtique/ext/loopbound/html/HeaderBounds.html#trace_respects_header_cs
http://www.irisa.fr/celtique/ext/loopbound/html/GlobalBounds_proof.html#global_bound

possible values of x at l. We use |[a, b]| = b − a + 1 to denote the size of the
interval [a, b]. Our formally verified value analysis is detailed in [7].

The value analysis could be used directly to estimate local bounds. We could
compute the size of each interval and estimate a local bound as the product
of all the sizes that were computed at the loop header. Since we assume that
programs terminate, a value in this domain is never reached twice. Thus, we
have: loc bound(P, lh) ≤

∏
x∈vars(P) |value(P)(lh)(x)|, where vars(P) is the

set of all program variables. While intuitive, this inequality requires a good
amount of formal details to be proved in a proof assistant (see Appendix B).

Example 2. In the following program, our value analysis will infer the loop in-
variant i ∈ [0, 9] ∧ j ∈ [0, 1]. As a consequence, we bound the local counter of
the loop header by 2× 10 = 20.

j = 0; i = 0; while (i < 9) { j = 1− j; if (j) i + +; }

In order to increase the precision of the local bound estimation, it is important
to restrict the set of variables involved in this product. This set is modified as fol-
lows. First, we slice P w.r.t. program point lh and only compute the local bound
of lh on P : loc bound(P, lh) = loc bound after slice(slicing(P, lh), lh).
Second, in the sliced program P ′ = slicing(P, lh), we only consider the inter-
esting variables that are live at lh and used in a statement belonging to the
nesting S of lh (thus S = nesting(lh)) and also defined in any (possibly differ-
ent) statement of S.

loc bound after slice(P ′, lh) =
∏

x∈live(lh)∩use(S)∩def(S)

|value(P ′)(lh)(x)|

This last part of the bound computation is proved correct using the following
lemma stating that the previous computation over-estimates the local counters.

Lemma 4. For any reachable state σ ∈ reach(P ′), we have

σ.cloc(lh) ≤
∏

x∈live(lh)∩use(nesting(lh))∩def(nesting(lh))

|value(P ′)(lh)(x)|

[Coq Proof]

By combining lemmas 4, 3 and 2 we obtain the proof of our main Theorem 1.

6 Experimental Evaluation

We have integrated our loop bound estimation in the CompCert 1.11 compiler.
Our formal development comprises about 15,000 lines of Coq code (consisting of
8,000 lines of Coq functions and definitions and 7,000 lines of Coq statements and
proof scripts) and 1,000 lines of OCaml. Our formalization has been translated
into an executable OCaml code using Coq’s extraction facility.

Our implementation has been compared to the SWEET reference tool [13]
against the Mälardalen WCET benchmark [12], a reference benchmark for

http://www.irisa.fr/celtique/ext/loopbound/html/LocalBounds.html#local_bound_correct

#LE %LE #LE %LE #GB %GB #GB %GB

1 adpcm 27 13 48% 22 81% 16 59% 18 67%

2 cnt 4 4 100% 4 100% 4 100% 4 100%

3 cover 3 3 100% 3 100% 3 100% 3 100%

4 crc 6 4 67% 6 100% 6 100% 6 100%

5 edn 12 9 75% 11 92% 12 100% 12 100%

6 expint 2 2 100% 2 100% 2 100% 2 100%

7 fdct 2 2 100% 2 100% 2 100% 2 100%

8 fft1 29 3 10% 6 21% 7 24% 7 24%

9 fibcall 1 1 100% 1 100% 1 100% 1 100%

10 fir 2 1 50% 1 50% 1 50% 2 100%

11 insertsort 2 1 50% 1 50% 1 50% 1 50%

12 jfdctint 3 3 100% 3 100% 3 100% 3 100%

13 lcdnum 1 1 100% 1 100% 1 100% 1 100%

14 ludcmp 11 6 55% 6 55% 6 55% 6 55%

15 matmult 7 7 100% 7 100% 7 100% 7 100%

16 ndes 12 12 100% 12 100% 12 100% 12 100%

17 ns 4 4 100% 4 100% 4 100% 4 100%

18 qurt 3 2 67% 3 100% 3 100% 3 100%

19 ud 11 11 100% 11 100% 11 100% 11 100%

73% 82% 81% 85%

SWEET

Geometric mean

Our tool SWEET Our tool
#LProgram

Fig. 7. Exact local bounds and meaningful global bounds of the benchmark. The num-
bers of loop bounds are given relative to the total number of loops.

WCET estimation tools. This benchmark provides a set of programs with rep-
resentative loops, mainly used by WCET tools but also by static analyzers [14].
Its focus on flow analysis makes it a reference on WCET-related loop bound
estimations. It is especially suited for interval-based analyses, currently the
state-of-the-art on industrial WCET tools. Results for both methods are given
in Fig. 7. The programs considered are those analyzed in [9] for which SWEET
could estimate at least one bound, excluding 2 of them that CompCert cannot
compile (i.e. one program with a longjmp statement and another one with an
unstructured switch statement such as in Duff’s device).

The number #L of loops of each program is given in the second column of
Fig. 7. The third column of Fig. 7 shows the accuracy of our estimation of local
bounds: it gives the number #LE of estimations of local loop bounds (and their
percentage) that are exact bounds. Unfortunately, this column is not given in [9],
but we have estimated it from the results of our tool and our manual analysis
to infer which loops are estimated by SWEET.

Our results are close to those obtained by SWEET. On average, 73% of the
loops are exactly estimated by our method, while 82% of the loops are exactly
bounded by SWEET. The histogram in Fig. 7 shows for each program, the num-
ber of exact local bounds for our tool (in dark grey) and for SWEET (in black)

relatively to the total number of loops (baseline in light grey). Differences in pre-
cision come from our value analysis, that is slightly less precise than SWEET’s.
As our value analysis does neither handle floating-point values nor global vari-
ables, nor performs a pointer analysis, 17 loops are bounded by SWEET and
not by our method.

The last two columns of Fig. 7 give the number #GB of meaningful estimations
(i.e. realistic estimations, that differ from MAX INT for instance) of global loop
bounds (and their percentages). On average, our tool estimates almost as many
global bounds as SWEET. Indeed, 81% of global bounds are estimated by our
tool, and 85% of global loops are estimated by SWEET.

Concerning the analysis time, hardware differences make it difficult to com-
pare them with SWEET’s. Nevertheless, we could verify that the use of checkers
does not incur a significant overhead in our analysis. Benchmarking the programs
in Fig. 7 using a current personal computer takes less than a minute.

7 Related Work

Ranganath, Amtoft et al. [18,20] developed paper-and-pencil proofs of program
slicing, introducing the notion of observable vertices. Their main concern is to
deal with generalized programs, having several or no end nodes. Ranganath et
al. prove slicing soundness by weak bisimulation, dealing with infinite behaviors.
Amtoft extends the proof, obtaining a smaller slice by using a weak simulation at
the cost of not preserving termination. Based on their work, a formal verification
of program slicing in Isabelle is given in [22], where program slicing is used for
detecting non-interference of information flow. This formalization of program
slicing is relational and generic; it has been instantiated on Java programs in
the Jinja framework but it is not executable, contrary to our work.

To the best of our knowledge, the only work related to formal verification
of loop bound calculation is [3], where the formal verification consists in using
Hoare logic to verify that a program satisfies its specification including a cost
annotation (expressed by an equality of the form global cost = constant value).
A Frama-C plugin has been developed in order to experiment the approach on
simple programs without nested loops. Contrary to this work where loops are
handled syntactically, our work relies on an abstract interpreter with widening
capabilities that has been formally verified in Coq. As far as we know, their
Hoare logic is neither formalized nor proved sound.

Many papers have been published on resource analysis [1,2] and loop bound
is just one example of resource. The associated algorithms generally target more
difficult loop bounds that WCET tools like SWEET or our own tool. It is unclear
if they provide significant precision gains on representative WCET benchmarks.
Resource analysis tools are not formally verified using a proof assistant. One
exception is [2] where a shallow embedding of a separation logic in Coq is men-
tioned. The only mechanized proof is the soundness of the core logic presented in
the research paper. This should not be confused with the kind of formalization
effort we provide in order to formally verify a tool for C programs. Advanced

ressource analyses such as [11,24] are able to infer symbolic loop bounds that
are out of reach for WCET tools like SWEET. This kind of static analysis re-
lies on SMT solvers, hence their formal verification would require the a priori
verification of a SMT solver.

Checkers are powerful tools for verifying the soundness of program trans-
formations. Several formally verified checkers have been developed for compiler
passes of CompCert (e.g. [21,4]). Even if all these checkers are specific tools
devoted to a specific compiler pass, previous work and ours has shown that this
alternative formal verification technique is worthwhile when the formalization
requires to reason on sophisticated imperative data structures and algorithms.

Our long-term goal is to complement the CompCert compiler with WCET
guarantees about the code it generates. The formally verified operating system
kernel seL4 [15] is faced to similar challenges. Blackham et al. [6] apply tradi-
tional WCET estimation techniques on the seL4 kernel and provide conservative
upper bounds about its worst-case interrupt response time. Their WCET tool
is neither verified nor formalized.

8 Conclusion

We have presented, formalized and implemented a loop bound estimation for
WCET analysis. Its design follows closely the techniques used by the reference
tool SWEET and our experiments show that it is competitive with it in terms of
precision of the estimated bounds. The work strengthens the CompCert frame-
work. It provides bound estimations on the assembly programs generated by the
compiler and it increases the CompCert toolchain with non trivial components
that could be reused in different contexts, e.g. for developing new optimizations
of the compiler: a loop reconstruction for RTL and a program slicer. Moreover,
the bound calculation theorem makes an important formal link between the
estimated loop bounds and the size of variable ranges.

Our loop bound estimation can be improved in several directions. One is
to improve the bound calculation by formalizing ILP solvers to relate precisely
local and global bounds. These solvers contain probably too much highly engi-
neered heuristics to be directly formalized and we would like to develop efficient
validation checkers for them. Another direction is to increase CompCert with a
precise hardware cost model and link abstract counters and realistic costs.

References

1. E. Albert, R. Bubel, S. Genaim, R. Hähnle, and al. Verified resource guarantees
using COSTA and KeY. In PEPM ’11, pages 73–76. ACM, 2011.

2. R. Atkey. Amortised resource analysis with separation logic. Logical Methods in
Computer Science, 7(2), 2011.

3. N. Ayache, R. M. Amadio, and Y. Régis-Gianas. Certifying and reasoning on cost
annotations in C programs. In Proc. of FMICS, volume 7437 of LNCS, pages
32–46. Springer, 2012.

4. G. Barthe, D. Demange, and D. Pichardie. A formally verified SSA-based middle-
end - Static Single Assignment meets CompCert. In Proc. of ESOP, volume 7211
of LNCS, pages 47–66. Springer, 2012.

5. R. Bedin França, S. Blazy, D. Favre-Felix, X. Leroy, and al. Formally verified
optimizing compilation in ACG-based flight control software. In ERTS, 2012.

6. B. Blackham, Y.Shi, and G. Heiser. Improving interrupt response time in a verifi-
able protected microkernel. In Proc. of EuroSys, pages 323–336. ACM, 2012.

7. S. Blazy, V. Laporte, A. Maroneze, and D. Pichardie. Formal verification of a
C value analysis based on abstract interpretation. In Proc. of Static Analysis
Symposium (SAS), 2013. To appear.

8. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In PLDI 2006, pages 415–426. ACM Press, 2006.

9. A. Ermedahl, C. Sandberg, J. Gustafsson, S.Bygde, and B. Lisper. Loop bound
analysis based on a combination of program slicing, abstract interpretation, and
invariant analysis. In Workshop on WCET Analysis, 2007.

10. F.Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. of
FMPA 1993, volume 735 of LNCS, pages 128–141. Springer-Verlag, 1993.

11. S. Gulwani. SPEED: Symbolic complexity bound analysis. In Proc. of CAV,
volume 5643 of LNCS, pages 51–62, 2009.

12. J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET
benchmarks: Past, present and future. In Proc. WCET 2010, pages 137–147, 2010.

13. J. Gustafsson and A. Ermedahl. Automatic derivation of path and loop anno-
tations in object-oriented real-time programs. Scalable Computing: Practice and
Experience, 1(2), 1998.

14. N. Halbwachs and J. Henry. When the decreasing sequence fails. In Proc. of Static
Analysis Symposium (SAS), LNCS, pages 198–213. Springer, 2012.

15. G. Heiser, T. C. Murray, and G. Klein. It’s time for trustworthy systems. IEEE
Security & Privacy, 10(2):67–70, 2012.

16. X. Leroy. Formal verification of a realistic compiler. CACM, 52(7):107–115, 2009.
17. G. Ramalingam. On loops, dominators, and dominance frontiers. ACM TOPLAS,

24(5):455–490, September 2002.
18. V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, and al. A new foundation for

control dependence and slicing for modern program structures. ACM TOPLAS,
29(5), 2007.

19. RTCA. DO-178C: Software considerations in airborne systems and equipment
certification. Radio Technical Commission for Aeronautics Std., 2012.

20. T.Amtoft. Slicing for modern program structures: a theory for eliminating irrele-
vant loops. Inf. Process. Lett., 106(2):45–51, 2008.

21. J.-B. Tristan and X. Leroy. A simple, verified validator for software pipelining. In
Proc. of POPL, pages 83–92. ACM Press, 2010.

22. D. Wasserrab and A. Lochbihler. Formalizing a framework for dynamic slicing of
program dependence graphs in Isabelle/HOL. In Proc. of TPHOL, volume 5170
of LNCS, pages 294–309, 2008.

23. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, and al. The worst-
case execution-time problem — overview of methods and survey of tools. ACM
Trans. Embed. Comput. Syst., 7:36:1–36:53, May 2008.

24. F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative
programs with the size-change abstraction. In Proc. of Static Analysis Symposium
(SAS), volume 6887 of LNCS, pages 280–297. Springer, 2011.

A Detailed simulation proof for the program slicing

The simulation between states used in the soundness proof of program slicing is
a weak simulation, i.e. it does not preserve infinite executions. In particular, a
program P may not terminate while a sliced program P ′ may terminate (some
infinite loops may be sliced away).

We consider two matching states, σ1 ∈ reach(P) and σ′1 ∈ reach(P ′):
σ1 ∼ σ′1. An execution step σ1 → σ2 is observable if σ1.l ∈ SL(ls), and silent
otherwise. A silent step corresponds to an execution step from a skip statement
in the sliced program.

Assume the program P satisfies the constraints (C1) to (C9). Its entry point
is always in the slice, so at the beginning of the execution, the rule (R1) holds.
If σ1 → σ2, then P ′ follows in lock-step (σ′1 → σ′2) to the same vertex l2, which
corresponds to the intuitive idea that a statement in the slice is executed in both
programs. If l2 ∈ SL(ls), then rule (R1) still holds. Otherwise, either l2 has a
next observable vertex (and rule (R2) holds), or it doesn’t (l2 /∈ dom(NObs)) and
rule (R3) holds.

The crux of the simulation happens when the original and sliced programs are
desynchronized: rule (R2) holds and the states have different program points.
In this case, whenever σ1 → σ2, there is no corresponding step in the sliced
program, until σ2 is reaching a vertex belonging to the slice. Properties (C2)
to (C4) ensure that no relevant variable will be modified in P , so the matching
relation still holds.

When the execution returns in the slice (σ2 ∈ SL(ls)), we need to resyn-
chronize the programs. In this case, the sliced program performs one or several
(silent) steps (σ′1 →+ σ′2) until it reaches σ2′.l = σ2.l, where σ2.l (resp. σ2′.l) is
the next observable vertex of σ1.l (resp. σ′1.l). This is where the next observable
distance comes into play: it exhibits a finite number of steps that are required
for the resynchronization to happen. After resynchronization, both states match
again and rule (R1) holds.

This alternation between vertices inside and outside the slice can happen
several times, until either P reaches the exit node (if it is in the slice) and
the simulation ends, or until P reaches a vertex that is after the slice (σ2.l /∈
dom(NObs)). In this case, property (C7) ensures that we cannot return to the
slice anymore. P ′ then performs an arbitrary number of steps until it reaches the
(unique) end vertex lexit. By using an exit distance similar to the next observable
distance, we know that lexit can always be reached in a finite number of steps.
This ensures termination of P ′.

Afterwards, states match by rule (R3), for any further steps performed by
P . We do not need to match match relevant variables anymore.

B Detailed proofs for the bound calculation

Proof (of Lemma 2). We establish this property by proving, by induction on
finite execution traces, that for any vertex l, distinct from its header lh =
header(nesting(l)), and any partial finite execution trace ξ = σ, σ1, ...σn, one
of three following conditions holds:

– either the expected inequality holds strictly: σ.cglob(l) < σ.cglob(lh),
– or l has not been reached yet: σ.cglob(l) = 0,
– or σ.cglob(l) = σ.cglob(lh) but there exists k ∈ [0, n−1] such that σk is at the

program point l and all states σk+1, . . . , σn−1 did not reach the header lh.

The last condition implies that we cannot reach vertex l in σn: it would build a
cycle from l to l that does not contain lh and this is forbidden by the property
cycle at not header (Section 3).

Proof (of Lemma 3). We first consider execution traces of the form ξ = ξ0·σp·ξ1·σ
such that σp is a state at point lp and all states in trace ξ1 did not reach lp again.
On such traces we show that σ.cglob(lh)−σp.cglob(lh) ≤M holds. Unfortunately,
this property is not inductive. We strengthen it into a disjunction where:

– either σ.cglob(lh) = σp.cglob(lh) and no state in ξ1 did reach lh yet,
– or σ.cglob(lh) = σp.cglob(lh) + σ.cloc(lh) and the state σ is currently in the

nesting of lh,
– or σ is currently out of the nesting of lh, σ.cglob(lh)− σp.cglob(lh) ≤ M and
lh has been reached during ξ1.

We prove this disjunction by induction on the execution trace ξ1.
To conclude this proof, we consider an arbitrary trace ξ = σ0 · · ·σ and we

divide it into K + 1 = 1 + σ.cglob(lp) subtraces ξ = ξ0 · ξ1 · · · ξK such that
∀i ∈ [1,K], ξi starts with a state σi at point lp and then never reaches it again.
We note σK+1 = σ. We then express σ.cglob(lh) as

σ.cglob(lh) = σ0.cglob(lh) +

K−1∑
k=0

(σk+1.cglob(lh)− σk.cglob(lh))

In the initial state σ0, every counter is null and each element in the sum is
bounded by M . Thus, we conclude that σ.cloc(lh) ≤ K ×M and finish the proof
since K = σ.cglob(lp).

Proof (of Lemma 4). Given a vertex l, we use I(l) to denote the set live(l) ∩
use(nesting(lh))∩def(nesting(lh)) of interesting variables at l. We first prove
that, if there exists an execution trace ξ = ξ1 · σ1 · ξ2 · σ2 such that σ1.l = σ2.l
and both states σ1 and σ2 match pointwise on each variable of I(l), then we can

build a valid execution trace of arbitrary large size ξ1 · σ1 · (ξ2 · σ2)
N

. Since we
assume that P terminates, we obtain a contradiction.

Now, any execution trace ξ reaching lh at least once can be divided into
ξ = ξ1 · σ1. ξ2. σ2 where σ1 is the last state in the execution that enters in the
nesting of lh. The counter σ2.cloc(lh) is equal to the length of the sub-trace ξh

that we obtain by projecting σ1. ξ2. σ2 on the states that are at vertex lh. Each
state in ξh can be turned into a n-tuple, where n = |I(lh)| contains the value
of each variable of I(lh) in this state. Mapping this transformation on ξh, we
obtain a list of size σ2.cloc(lh). This list contains distinct n-tuples thanks to the
Reductio ad absurdum we made early in this proof. By soundness of the value
analysis, each n-tuple belongs to the direct product of the interval value(P ′)(lh).
We prove that there exists a list of size

∏
x∈I |value(P ′)(lh)(x)| containing all

the possible n-uples of this direct product and conclude our proof by a pigeon
hole argument.

	Formal Verification of Loop Bound Estimation for WCET Analysis

