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CompCert is a formally verified compiler that generates compact and efficient code for a large subset of the
C language. However, CompCert foregoes using SSA, an intermediate representation employed by many
compilers that enables writing simpler, faster optimizers. In fact, it has remained an open problem to verify
formally an SSA-based compiler. We report on a formally verified, SSA-based, middle-end for CompCert. In
addition to providing a formally verified SSA-based middle-end, we address two problems raised by Leroy
in 2009: giving an intuitive formal semantics to SSA, and leveraging its global properties to reason locally
about program optimizations.
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1. INTRODUCTION
Static single assignment. Static single assignment (SSA) form [Cytron et al. 1991] is

an intermediate representation where variables are statically assigned exactly once.
Thanks to the considerable strength of this property, the SSA form simplifies the def-
inition of many optimizations, and improves their efficiency, as well as the quality
of their results. It is therefore not surprising that many modern compilers, including
GCC and LLVM, rely heavily on SSA form, and that there is a vast body of work on
SSA. However, the simplicity of SSA form is deceptive, and designing a correct SSA-
based middle-end compiler has been fraught with difficulties. In fact, it has been a sig-
nificant challenge to design efficient, semantics-preserving, algorithms for converting
programs into SSA form, or optimizing SSA programs, or even transforming programs
out of SSA form.

Verified Compilers. Compiler correctness aims to provide rigorous proofs that compilers
preserve the behavior of programs they compile. After 40 years of rich history, the field
is entering into a new era, with the advent of realistic and mechanically verified com-
pilers. This new generation of compilers was initiated with CompCert [Leroy 2009],
a compiler that is programmed and verified in the Coq proof assistant and generates
compact and efficient assembly code for a large fragment of the C language. Leroy’s
CompCert has been rightfully acclaimed as a tour de force, but it foregoes relying on
an SSA-based middle end. Leroy [2009] reports:

Since the beginning of CompCert we have been considering using SSA-based
intermediate languages, but were held off by two difficulties. First, the dy-
namic semantics for SSA is not obvious to formalize. Second, the SSA prop-
erty is global to the code of a whole function and not straightforward to
exploit locally within proofs.

and adds: “A typical SSA-based optimization that interests us is global value number-
ing”. However verifying GVN is a significant challenge, and its formal verification has
remained beyond the current state-of-the-art in certified compilers.

The structural properties of SSA are well-identified in the literature, and some
proofs of SSA-based analyses and transformations can be found [Cytron et al. 1991;
Chow et al. 1997; Boissinot et al. 2008]. What is missing in those works is the se-
mantic counterparts of those properties. The proofs are traditionally based on how the
SSA-based algorithms work and the information they compute (i.e. properties of the
CFG). In particular, the semantic properties and invariants established by the SSA
generation algorithm are never expressed precisely. This is probably due to the lack of
a definition of a semantics for SSA that would be both formal and close to the intuitive
definition given in the seminal papers [Alpern et al. 1988; Cytron et al. 1991].

Static Single Assignment meets verified compilers. The thesis of our work is that a compiler
can be realistic, verified and still rely on a SSA form. To support our thesis, we provide
the first verified SSA-based middle-end. Rather than programming and proving a veri-
fied compiler from scratch, we have programmed and verified a SSA-based middle-end
compiler that can be plugged into CompCert at the level of RTL. Figure 1 describes
the overall architecture. Our middle-end performs four phases: (i) normalization of
RTL program; (ii) transformation from RTL form into SSA form; (iii) optimization of
programs in SSA form, including Global Value Numbering (GVN) [Alpern et al. 1988];
(iv) transformation of programs from SSA form to RTL form; and relies on CompCert
for the transformation from C to RTL programs prior to SSA conversion, and from RTL
programs to assembly code after conversion out of SSA—our goal is to develop a real-
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Fig. 1: The SSA Middle-end

istic and verified SSA-based middle-end, rather than to demonstrate that SSA-based
optimizations dramatically improve the efficiency of generated code.

We validate our compiler middle-end with a mix of techniques directly inherited from
CompCert. We employ translation validation [Samet 1975; Pnueli et al. 1998; Nec-
ula 2000]— a technique increasingly favored by CompCert [Tristan and Leroy 2009;
2010]— for converting programs into SSA and for GVN. Specifically, we program in
Coq verified checkers that validate a posteriori results of untrusted computations, and
we implement in OCaml efficient algorithms for these computations. We rely on Cytron
et al. [1991]’s algorithm for computing minimal SSA form, and on Alpern et al. iteration
strategy [Alpern et al. 1988] for computing a numbering in GVN. In contrast, the nor-
malization of RTL programs, and the conversion out of SSA are directly programmed
and proved in Coq. In addition, our work addresses the two issues raised by Leroy
[2009]. First, we give a simple and intuitive operational semantics for SSA, that fol-
lows the informal description given in [Cytron et al. 1991], and does not require any
artificial state instrumentation. Second, we define on SSA programs two global prop-
erties, called strictness and equational form, allowing to conclude reasonably directly
that the substitutions performed by GVN and other optimizations are sound.

Summarizing, our work provides the first verified SSA-based middle-end, the first
formal proof of an SSA-based optimization, as well as an intuitive semantics for SSA.
It thus serves as a good starting point for further studies of verified and realistic SSA-
based compilers.

This paper supersedes [Barthe et al. 2012]. The main differences are a proof of com-
pleteness for the SSA translation validator, a description of the type inference imple-
mentation, a more detailed description of the conversion out of SSA and more pre-
cise measurements of the GVN optimizer efficacy. The companion Coq development is
available online [CompCertSSA 2012].

Contents. The paper is organized as follows. Section 2 provides a brief primer on SSA
and CompCert. In Section 3, we recall the syntax and semantics of RTL, the Comp-
Cert intermediate representation into which we plug our middle-end, and we explain
the pre-processing of RTL prior to the middle-end. Section 4 defines the SSA language
used by our middle-end. Conversion to and out of SSA forms are presented in Section 5
and 8 respectively. Section 7 presents the GVN optimizer. The correctness of this op-
timization relies on a core lemma, which we present in Section 6. We conclude with
experimental results in Section 9 and related work in Section 10. Throughout the pa-
per, we use Coq syntax for our definitions and results. Statements occasionally involve
some notions that are not introduced formally. In such cases, names are generally cho-
sen to be self-explanatory (for instance, not_wrong_program). In other cases, we forego
giving precise definitions as they are not needed to understand the paper (for instance,
the types chunk and addressing are unspecified in the definition of state). Our formal-
ization makes an extensive use of inductive definitions, which are introduced in Coq
using the keyword Inductive. Inductive definitions are used both for introducing new
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Fig. 2: Example program and its SSA forms

datatypes, e.g. the type of RTL instructions in Figure 4, and for introducing inductive
relations, e.g. the operational semantics of RTL instructions in Figure 4. In the latter
case, the declarations are written according to the pattern
Inductive R : A → B → Prop :=
| Rule1: ∀ a b, ... → R a b
| Rule2:... → R a b

meaning that the relation R is a binary predicate (indicated by Prop, the type of propo-
sitions in Coq) whose arguments are of types A and B respectively. The relation R is
defined by two rules Rules1 and Rules2, describing when the proposition (R a b) holds
for elements a and b (the hypotheses are indicated by dots).

2. BACKGROUND
2.1. Static Single Assignment form
Static Single Assignment is an intermediate representation in which variables are
statically assigned exactly once, thus making explicit in the program syntax the link
between the program point where a variable is defined and read.

2.1.1. Converting into SSA form. For straightline code, one simply tags each variable
definition with an index, and each variable use with the index corresponding to the
last definition of this variable. For example, [x := 1; y := x + 1;x := y − 1; y := x] is
transformed into [x0 := 1; y0 := x0 + 1;x1 := y0 − 1; y1 := x1]. The transformation is
semantics-preserving, in the sense that the final values of x and y in the first snippet
coincide with the final values of x1 and y1 in the second snippet.

On the other hand, one cannot transform arbitrary programs into semantically
equivalent programs in SSA form solely by tagging variables: one must insert φ-
functions to handle branching statements. Figure 2 shows a program a), and a pro-
gram b) that corresponds to a SSA form of a). In program a), the value of variable x
read at node 9 either comes from the definition of x at entry or at node 6. In program
b), these two definitions of x are renamed into the unique definition of x0 and x2 and
merged together by the φ-function of x3 at entry of node 9. The precise meaning of a φ-
block depends on the numbering convention of the predecessor nodes of each junction
point. In Figure 2 b) we make explicit this numbering by labelling the CFG edges. For
example, node 3 is the first predecessor of point 9 and node 6 is the second one. The
semantics of φ-functions is given in the seminal paper by Cytron et al. [1991]:

If control reaches node j from its kth predecessor, then the run-time support
remembers k while executing the φ-functions in j. The value of φ(x1, x2, . . .)
is just the value of the kth operand. Each execution of a φ-function uses only
one of the operands, but which one depends on the flow of control just before
entering j.

ACM Transactions on Programming Languages and Systems, Vol. Vol, No. Num, Article Art, Publication date: May Year.
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2.1.2. Maximal, minimal and pruned SSA. There may be several SSA forms for a single
program CFG. Figure 2 gives alternative SSA forms for a same initial program. In
the maximal SSA form (Figure 2b), a φ-function is inserted for all program variables,
at each join point. As the number of φ-functions directly impacts the quality of the
subsequent optimizations—as well as the size of the SSA form—it is important that
SSA generators for real compilers produce an SSA form with a minimal number of
φ-functions.

The minimal SSA form is informally specified as follows: a φ-function is needed for
a given variable at join points that can be reached by at least two distinct definitions
of that variable in the initial program. This is captured by the notion of convergence
point of CFG paths starting at two distinct definition points of a variable (the join
operator in [Cytron et al. 1991]).

Consider the program examples in Figures 2a and 2c. Two definitions of y (at points
1 and 4) can reach the join point 3: a φ-instruction is required at node 3 in Program 2c.
On the other hand, there is only one definition of x (the initial implicit definition of x)
that reaches that point in Program 2a and no φ-function is inserted for x at point 3 in
Program 2c.

Algorithmically, it is more efficient to determine the placement of φ-functions of min-
imal SSA using the equivalent notion of dominance frontier.

Definition 2.1 (Dominance relation). A node i in a CFG dominates another node j
if every path from the entry node of the CFG to j contains i. The dominance is said to
be strict if additionally i 6= j.

Definition 2.2 (Dominance frontier). For a node i of a CFG, the dominance frontier
DF (i) of i is defined as the set of nodes j such that i dominates at least one predecessor
of j in the CFG but does not strictly dominate j itself. The notion is extended to a set
of nodes S with DF (S) =

⋃
i∈S DF (i).

Definition 2.3 (Iterated dominance frontier). The iterated dominance frontier
DF+(S) of a set of nodes S is limi→∞ DF i(S), where DF 1(S) = DF (S) and
DF i+1(S) = DF (S ∪DF i(S)).

Efficient algorithms for computing the dominance frontiers rely on an effective rep-
resentation of the dominance relation, the dominator tree, which in turn relies on the
notion of immediate dominator.

Definition 2.4 (Immediate dominator). The immediate dominator of a node j, writ-
ten idom(j) is the closest strict dominator of j on every path from the entry node to j.
It is uniquely determined.

Definition 2.5 (Dominator tree). The dominator tree is defined as follows. The start
node is the root of the tree. Each node’s children are the nodes it immediately domi-
nates.

In a minimal SSA program generated by Cytron et al.’s algorithm, every φ-function
of an instance xi of an original variable x appears in a junction point j if and only if
j belongs to the iterated dominance frontier of the set of definition nodes of x in the
original program.

However, one can achieve more compact SSA forms by observing that, at any junc-
tion point, dead variables need not to be defined by a φ-function. The intuition is cap-
tured by the notion of pruned SSA form: a program is in pruned SSA form when the
φ-functions appear at the iterated dominance frontiers and for each φ-function of an
instance xi of an original variable x at a junction point j, x is live at j in the original
program (there is a path from j to a use of x that does not redefine x). Compared to
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Fig. 3: Common sub-expression elimination (CSE) using Gobal Value Numbering
(GVN). A no-op instruction is written Inop.

minimal SSA (Figure 2c), pruned SSA detects that the φ-function for y at point 9 can
be removed. Finally, semi-pruned SSA forms can be seen as a good trade-off between a
minimal SSA form that is not compact enough, and pruned SSA forms that are some-
times too costly to compute (pathological CFGs with can make the liveness analysis
intractable). The liveness analysis used for semi-pruned SSA is local to basic blocks: it
is hence less precise, but more efficient.

2.1.3. SSA-based optimizations. The SSA form simplifies the definition of many com-
mon optimizations. For instance, copy propagation algorithms can just walk through
a SSA program, identify statements of the form x := y, and replace every use of x
by y. Furthermore, several optimizations are naturally formulated on SSA. One typ-
ical SSA-based optimization is Global Value Numbering (GVN) [Alpern et al. 1988],
which assigns to variables an identifying number such that variables with the same
number will hold equal values at execution time. The effectiveness of GVN lies in its
ability to compute efficiently numberings that identify as many variables as possible.
Advanced algorithms [Alpern et al. 1988; Briggs et al. 1997] efficiently compute such
numberings. We briefly explain one such numbering in Section 7.

Figure 3 illustrates how GVN can be used to eliminate redundant computation. The
left program is the original code. In this program, for each i, the variables xi and yi
are assigned the same value number. Hence, the evaluation of y1 + 1 (resp. y1 + 2)
is a redundant computation when assigning y2 (resp. y3), and one can transform the
program into the semantically equivalent one shown on the right of the figure. The
strength of the analysis lies in its ability to reason about φ-functions, which allows it
to infer the equality x2 = y2. This is only possible because the numbering is global to
the whole program. Any block-local analysis would fail to discover the equality x2 = y2.

2.2. CompCert
CompCert is a realistic, formally verified compiler that generates PowerPC, ARM or
x86 code from source programs written in a large subset of C. CompCert formalizes
the operational semantics of dozen intermediate languages, and proves a semantics
preservation theorem for each phase.

Preservation theorems are expressed in terms of program behaviors, i.e. finite or infi-
nite traces of external function calls (a.k.a. systems calls producing observable events),
that are performed during the execution of the program, and claim that individual
compilation phases preserve behaviors.

A consequence of the theorems is that for any C program p that does not go wrong
(i.e. it does not reach a non-final state where no execution step is valid), and target pro-
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gram tp output by the successful compilation of p by the compiler compcert_compiler,
the set of behaviors of p contains all behaviors of the target program tp. The formal
theorem is:
Theorem compcert compiler correct: ∀ (p: C.program) (tp: Asm.program),

(not wrong program p ∧ compcert compiler p = OK tp) →
(∀ beh, exec asm program tp beh → exec C program p beh).

Each phase of the compiler is formally proved relying on simulation techniques, and
the formal development of CompCert provides the general correctness theorems of the
simulation diagrams. Some parts of the CompCert compiler are not directly proved in
Coq. This is the case of the register allocation [Leroy 2009], which is based on a graph
coloring algorithm. The graph coloring algorithm is written in OCaml, and then val-
idated a posteriori by a checker written in Coq. The correctness proof of the checker
(stating that if a coloring is accepted by the validator, then it is indeed a valid color-
ing) ensures this compilation phase provides the same guarantees as a transformation
written and proved directly in Coq, with the additional benefit of abstracting away
complex implementation details and heuristics.

3. THE RTL LANGUAGE
Our middle-end is plugged in at the level of the RTL language in CompCert. This
section presents briefly this language. RTL stands for Register Transfer Language. It
is a CFG-based three-address-like representation of the code, where most of the ex-
isting optimisations are performed (constant propagation, removal of redundant cast,
tail call detection, local value numbering and a register allocation that includes copy
propagation).

3.1. Syntax and semantics
The syntax and semantics of RTL is given in Figure 4. An RTL program is defined as
a set of global variables, a set of functions, and an entry node. Functions are modelled
as records that include a function signature fn_sig, and a CFG fn_code of instructions
over pseudo-registers. The CFG is not a basic-block graph: instead, it is a partial map
from CFG nodes to single instructions (in Figure 4, this map has type PTree.t instr1),
and we stick to this important design choice of CompCert. As explained by Knoop
et al. [1998], it allows for simpler implementations of code manipulations and simpli-
fies correctness proofs of analyses or transformations, while still achieving acceptable
performance.

The RTL instruction set includes arithmetic operations (Iop), memory loads (Iload)
and stores (Istore), function calls (Icall), conditional (Icond) and unconditional jumps
(Inop), and a return statement (Ireturn)— we do not discuss here jumptables and
other kinds of function calls: calls to a function pointer stored in a register, tail calls,
and built-in functions. With the exception of Return, all instructions take a node pc as
final argument which denotes the next instruction to execute. Additionally, all instruc-
tions but Inop take as arguments pseudo-registers (of type reg), memory chunks, or
addressing modes.

The type of states is defined as the tagged union of regular states, call states and
return states (Figure 4). We focus on regular states, as we only expose here the intra-
procedural part of the language. A regular semantic state (State) is a tuple that con-
tains a call stack (representing the current pending function calls), the current func-
tion description and stack pointer (to the stack data block, a part of the global memory

1CompCert, and our SSA extension thereof, crucially rely on these data structures. A data structure of type
(Ptree.t a) is an associative, partial map where keys have type positive – binary encoding of strictly posi-
tive integers – and associated data have type a. As the map is partial, the lookup return type is (option a).
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Inductive instr := RTL instructions (excerpt)
| Inop (pc: node)
| Iop (op: operation) (args: list reg) (res: reg) (pc: node)
| Iload (chk:chunk) (addr:addressing) (args: list reg) (res: reg) (pc: node)
| Istore (chk:chunk) (addr:addressing) (args:list reg) (src: reg) (pc: node)
| Icall (sig: signature) (fn:ident) (args: list reg) (res: reg) (pc: node)
| Icond (cond: condition) (args: list reg) (ifso ifnot: node)
| Ireturn (or: option reg).

Definition code := PTree.t instr. type of code graph

Record function := {
fn sig: signature; function signature
fn params: list reg; parameters
fn stacksize: Z; activation record size
fn code: code; code graph
fn entrypoint: node entry node

}.

Inductive state :=
| State (stack: list stackframe) call stack

(f: function) current function
(sp: val) stack pointer
(pc: node) current program point
(rs: regset) register state
(m: mem) memory state

| Callstate (stack: list stackframe) (f: fundef) (args: list val) (m: mem)
| Returnstate (stack: list stackframe) (v: val) (m: mem).

Inductive step: genv → state → trace → state → Prop :=
| ex Inop: ∀ ge s f sp pc rs m pc’,

fn code f pc = Some(Inop pc’) →
step ge (State s f sp pc rs m) ε (State s f sp pc’ rs m)

| ex Iop: ∀ ge s f sp pc rs m pc’ op args res v,
fn code f pc = Some(Iop op args res pc’) →
eval operation sp op (rs##args) m = Some v →
step ge (State s f sp pc rs m) ε (State s f sp pc’ (rs#res←v) m)

| ex Iload: ∀ ge s f sp pc rs m pc’ chk addr args res a v,
fn code f pc = Some(Iload chk addr args res pc’) →
eval addressing sp addr (rs##args) = Some a →
Mem.loadv chk m a = Some v →
step ge (State s f sp pc rs m) ε (State s f sp pc’ (rs#res←v) m)

Fig. 4: Syntax and semantics of RTL (excerpt)

where variables dereferenced in the C source program reside), the current program
point, the register state (a mapping of local variables to values) and the global mem-
ory. The semantics also includes a global environment (of type genv) mapping function
names and global variables to memory addresses.

The operational behavior of programs is modelled by the relation step between two
semantic states (see Figure 4), and a trace of events. The instructions we show there
do not emit any event, hence the transitions that they induce are tagged by the empty
event trace ε. In the full formalization of RTL, the only instruction producing an event
is the call to an external function, which produces for a system call, an event made
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Fig. 5: An RTL program and its normalized version

of (1) the callee identifier, (2) the values of its arguments, and (3) its return value.
We briefly comment on the rules: (Inop pc′) branches to the next program point pc′.
(Iop op args res pc′) performs the arithmetic operation op over the values of registers
args (written rs##args), stores the result in res (written rs#res← v), and branches
to pc′. The instruction (Iload chk addr args res pc′) loads a chk memory quantity from
the address determined by the addressing mode addr and the values of the args regis-
ters, stores the memory quantity just read into res, and branches to pc′.

3.2. Normalizing RTL syntax
Before generating the SSA form of an RTL code, we first perform a structural normal-
ization phase of the RTL code (see Figure 1) that we have added to CompCert, prior to
the middle-end proper.

This normalization phase consists of transforming an RTL program into another
one, with additional structural constraints on the CFGs of functions. We normalize an
RTL CFG so that the only instruction that can lead to a junction point is an (Inop pc)
instruction. Figure 5 shows an example RTL program and its normalized version.

This normalization phase has been programmed and proved in Coq. One may ini-
tially suspect that this normalization phase is quite insignificant. But this structural
constraint will carry over the SSA form of RTL programs, and will allow for light-
ening the formal development of our SSA middle-end. As will be pointed out in the
next sections, this impacts the formal definitions of the syntax of SSA, but also greatly
simplifies its semantics. This also simplifies the definition and the proof of our SSA
validator, the GVN-based CSE, and the SSA deconstruction. Also, we take care dur-
ing this normalization to remove from the function CFG all the nodes that are not
syntactically reachable from the entry node. Having CFGs with all nodes reachable
simplifies many formal definitions, including the one of dominance. Strictly speaking,
an unreachable node is dominated by any other node in a graph. So, by eliminating
such nodes, we also eliminate this corner case from the definitions.

4. THE SSA LANGUAGE
We describe the syntax and operational semantics of our SSA language that provides
the SSA form of RTL programs. We equip the notion of SSA program with a well-
formedness predicate capturing essential properties of SSA forms.

4.1. SSA programs
4.1.1. Syntax. Our definition of SSA program distinguishes between RTL-like instruc-

tions and φ-functions. The distinction avoids the need for unwieldy mappings between
program points when converting to SSA, and allows for a smooth integration in Comp-
Cert. Figure 6 introduces the syntax of SSA.

Compared to RTL functions, SSA functions operate on indexed registers of type
SSA.reg, and include an additional field fn_phicode mapping junction points to φ-
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Definition reg := RTL.reg ∗ idx type of indexed registers

Inductive instr := ... RTL-like instructions
(operating on SSA.regs)

Inductive phiinstr :=
| Iphi (args: list SSA.reg) (res: SSA.reg). φ-functions

Definition phiblock:= list phiinstr. type of φ-blocks

Definition phicode := PTree.t phiblock. type of φ-blocks graph

Record function := {
fn sig: signature; function signature
fn params: list SSA.reg; parameters
fn stacksize: Z; activation record size
fn code: code; code graph
fn phicode: phicode; φ-blocks graph
fn entrypoint: node entry node

}.

Fig. 6: Syntax of SSA

blocks. The latter are modelled as lists of φ-functions, each of the form (Iphi args res),
where res is an indexed register, and args a list of indexed registers.

We define structural constraints that allow giving an intuitive semantics to SSA
programs. First, we require that the domain of the function fn_phicode be the set of
junction points. Second, we require that all φ-functions in a φ-block have the same
number of arguments as the number of predecessors of that block. Our last require-
ment is the normalization criterion of the CFG of SSA functions: all predecessors of a
junction point must be (Inop pc) instructions.

4.1.2. Strict SSA. We consider two essential properties of SSA forms: unique defini-
tions and strictness [Brisk 2006]. The unique definitions property states that each
register is uniquely defined, whereas the strictness property states that each variable
use is dominated by the (unique) definition of that variable.

While the two properties are closely related, neither implies the other: the program
[y0 := x0;x0 := 1] satisfies the unique definitions property but is not in strict form
whereas the program [x0 := 1;x0 := 2; y0 := x0] is strict but does not satisfy the unique
definitions property.

To formalize these properties, one first defines the type of CFG paths, and
two predicates dom and sdom for dominance and strict dominance. We also prove
many properties of the dominance relation, such as its reflexivity, transitivity, and
anti-symmetry. Then, one must define the two predicates def and use of type
SSA.function→ SSA.reg→ node→ Prop such that proposition def f x pc (respectively
use f x pc) holds iff the register x is defined (resp. used) at node pc in the code of the
function f. Predicate def is defined in the obvious way. The definition of use is more
involved, because of φ-functions. A variable is used either by an RTL-like instruction
or a φ-function:

Definition use (f:SSA.function) (x:reg) (pc:node) : Prop :=
use code f x pc ∨ use phicode f x pc.

where predicate use_code defines when a variable is used in the RTL-like code. It
is defined straightforwardly: a variable is used if it appears in the right hand-side of
an assignment, in the condition of an Icond instruction, as an argument of a function
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Fig. 7: Example (normalized) SSA program – The variable y2 is defined at node 3 (in
the φ-block attached to that program point), and used at points 3 and 4. The variable
x2 is defined at node 6 and used at node 8, the second predecessor of the junction point
9, where x2 is the second argument of the φ-function.

call etc. We now explain predicate use_phicode. The widely adopted convention is to
view φ-functions as lazily evaluated. Hence, the kth argument of a φ-function is used
at the kth predecessor of the corresponding block.
Inductive use phicode : SSA.function → reg → node → Prop :=
| upc intro : ∀ f pc pred k arg args dst phib

(PHIB : fn phicode f pc = Some phib)
(ASSIG : In (Iphi args dst) phib)
(KARG : nth error args k = Some arg) arg is the kth element of args
(KPRED : index pred f pred pc = Some k), pred is the kth predecessor of pc in f
use phicode f arg pred.

This matches the semantics we formally define in Section 4.2: φ-functions are ex-
ecuted along the edge leading to the φ-block. This definition also allows reusing the
traditional notion of strictness defined on non SSA programs. Figure 7 illustrates the
definition of predicates def and use.

Using predicates def and use, one can then state the unique definitions and strict-
ness properties, that defines the strict SSA form. We omit the formal definition of
unique_def (it is as expected but rather verbose).

Definition unique def (f: SSA.function) := ...

Definition strict (f: SSA.function) :=
∀ x u d, use f x u → def f x d → dom f d u.

4.1.3. Well-formed SSA programs. Finally, the well-formedness of SSA programs is for-
mally defined by the following predicates (the keyword Record must be interpreted as
a conjunction):

Record wf ssa function (f:SSA.function) : Prop := {
fn ssa: unique def f;
fn wf block: block nb args f;
fn strict: strict f;
fn block jp: ∀ jp, join point jp f ↔ fn phicode f jp 6= None;
fn norm:∀ jp pc, join point jp f → jp∈(succs f pc) → fn code f pc=Some(Inop jp)
}.

where predicate (join_point jp f) means that the program point jp is a join point in
the CFG of function f (meaning it has at least two static predecessors). The predicate
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Inductive step: SSA.genv → SSA.state → trace → SSA.state → Prop :=
| ex Inop njp: ∀ ge s f sp pc rs m pc’,

fn code f pc = Some(Inop pc’) →
¬ join point pc’ f →
step ge (State s f sp pc rs m) ε (State s f sp pc’ rs m)

| ex Inop jp: ∀ ge s f sp pc rs m pc’ phib k,
fn code f pc = Some(Inop pc’) →
join point pc’ f →
fn phicode f pc’ = Some phib →
index pred f pc pc’ = Some k →
step ge (State s f sp pc rs m) ε (State s f sp pc’ (phistore k rs phib) m)

Fixpoint phistore (k:nat) (rs:SSA.regset) (phib:phiblock) : SSA.regset :=
match phib with
| nil ⇒ rs
| (Iphi args res)::phib ⇒

match nth error args k with
| None ⇒ rs never happens for well-formed SSA functions
| Some arg ⇒ (phistore k rs phib)#res ← (rs#arg)

end
end.

Fig. 8: Semantics of SSA (excerpt)

block_nb_args states that φ-functions arguments are consistent with the number of
predecessors of the CFG node holding the block. In the sequel, we show that the con-
version to SSA yields well-formed programs. Our SSA-based optimizations will assume
that the input SSA programs are well-formed. In turn, each of the transformations
must be proved to preserve well-formedness. We come back to this point in Section 9.1.

4.2. Semantics
SSA states are similar to RTL states, except that the type of registers and current
function are modified into SSA.reg and SSA.function respectively. We describe now the
semantics of SSA programs.

4.2.1. Exploiting normalization for an intuitive semantics. The small-step operational seman-
tics is defined on SSA programs that satisfy the structural constraints introduced in
the previous section (wf_ssa_function).

Formally, we define SSA.step as a relation between pairs of SSA states and a trace
of events. The definition follows the one of RTL.step, except for instructions of the form
(Inop pc′), where one distinguishes whether pc′ is a junction point or not. In the latter
case, the semantics coincide with the RTL semantics, i.e. the program point is updated
in the semantic state. If on the contrary pc′ is a junction point, then one executes the
φ-block attached to pc′ before the control flows to pc′.

Executing φ-blocks on the way to pc′ avoids the need to instrument the semantics of
SSA with the predecessor program point, and crisply captures the intuitive meaning
given to φ-blocks by Cytron et al. (see Section 2). Note in particular that the normal-
ization ensures that the predecessor of a junction point is an Inop instruction. This
greatly simplifies the definition of the semantics (φ-block can only be executed after an
Inop), and subsequently the proofs about SSA programs.

4.2.2. Parallel execution of φ-blocks. Following conventional practice, φ-blocks are given
a parallel (big-step) semantics. In fact, the SSA generation algorithm ensures, by con-
struction, that the φ-functions arguments are never assigned by a distinct φ-function in
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the same block. So this parallel semantics seems to be of little help. But later optimiza-
tions will exploit this semantics, that makes explicit the independence of φ-arguments
with regards to φ-function destinations [Hack et al. 2006; Boissinot et al. 2009].

The semantics of φ-blocks is formally defined with phistore (Figure 8), where we
write S#r← v to denote an update of the value of a register r to the value v in a
SSA.regset S. When reaching a join point pc′ from its kth predecessor, we update the
register set rs for each register res assigned in the φ-block phib with the value of reg-
ister arg in rs (written rs#arg), where arg is the kth operand in the φ-function of res
(written nth_error args k = Some arg). When the φ-block is empty (nil clause of the
top-level pattern matching), the environment is left unchanged. With the same nota-
tions, phistore satisfies, on well-formed SSA functions, a parallel assignment prop-
erty:

∀ arg res, In (Iphi args res) phib →
nth error args k = Some arg → (phistore k rs phib)#res = rs#arg

5. TRANSLATION VALIDATION OF SSA GENERATION
Modern compilers typically follow the algorithm by Cytron et al. [1991] to generate a
minimal SSA form of programs in almost linear time w.r.t. the size of the program.
The algorithm proceeds in four steps:

(i) Build the CFG dominator tree using the algorithm of [Lengauer and Tarjan 1979]
(ii) Compute dominance frontiers (bottom-up traversal of the dominator tree)

(iii) Place φ-functions at iterated dominance frontiers of RTL variables
(iv) Rename definitions and uses of RTL variables with the correct indexes (top-down

traversal of the dominator tree).

Programming efficiently the algorithm in Coq and proving formally its correctness
is a significant challenge—even verifying formally Step (i) requires one to formalize a
substantial amount of graph theory. Instead, we provide a new validation algorithm
that checks in linear time that an SSA program is a correct SSA form of an input RTL
program. The algorithm is complete w.r.t. minimal SSA form, and can be enhanced
by a liveness analysis to handle pruned and semi-pruned SSA forms, as presented in
Section 2.1.2. In order to be used in a certified compiler chain, we also show that our
validator is sound: it ensure the preservation of behaviors.

Translation validation of SSA conversion is performed in two passes. The first pass
performs a structural verification on programs: given a RTL function f and a SSA
function tf, it verifies that tf satisfies all clauses of well-formedness except strictness,
and that the code of f can be recovered from its SSA form tf simply by erasing φ-
blocks and variable indices—the latter property is captured formally by the proposition
structural_spec f tf. The second pass relies on a type system to ensure strictness and
semantics-preservation. Overall the pseudo-code of the validator is

Definition SSA validator (f: RTL.function) (tf: SSA.function) (Γ: gtype): bool :=
if (check blocks are wf tf) ensures block_are_wf tf

&& (check blocks are at jp tf) ensures block_jp tf
&& (check normalized tf) ensures normalization
&& (check unique def tf) ensures unique_def tf
&& (check structural spec f tf) ensures structural_spec f tf

then (is well typed f tf Γ)
else false

where is_well_typed f tf returns true when the function is well-typed with respect
to the typing Γ (defined below) in our type system for SSA.
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5.1. Type system
The basic idea of our type system is to track for each variable its most recent definition.
This is achieved by assigning to all program points a local typing, i.e., an element of
ltype = RTL.reg→ idx. We let γ range over local typings. Then, the global typing of
an SSA function tf is an element of gtype = node→ ltype. We let Γ range over global
typings. The type system is structured in three layers. The lowest layer checks that
RTL-like instructions make a correct use of variables. The middle layer checks that
CFG edges are well-typed. Finally, the third layer of the type system defines the notion
of well-typed function.

Throughout this section, we use Figure 9 as a running example (an RTL program,
its pruned SSA form and its type mapping).

5.1.1. Liveness. As explained in Section 2, liveness information can be used to min-
imize the number of φ-functions in a SSA program. Specifically, φ-blocks need to as-
sign only live variables. Hence, our type system is parametrized by a function live
modelling a liveness analysis result, a mapping from CFG nodes to sets of registers:
(live i) is the set of registers that are live at node i.

Formally, the type system does not need to know much about the liveness informa-
tion, and how it is computed. We only demand that the live function satisfies two
properties: (i) if a variable is used at a program point, then it should be live at this
point and (ii) a variable that is live at a given program point is, at the predecessor
point, either live or assigned. For a function f, the conjunction of these two properties
is denoted by the Coq record (wf_live f live):
Record wf live (f: RTL.function) (live: node → Regset.t):= {

wf live use: ∀ pc x, use code f x pc → x ∈ (live pc) ;

wf live incl: ∀ pc pc’ x,
is edge f pc pc’ → x ∈ (live pc’) →
x ∈ (live pc) ∨ assigned code f pc x

}.

Our type system is able to handle different SSA forms through appropriate instan-
tiations of live. Our formalization provides support for minimal SSA and pruned SSA
forms, respectively by defining live as the trivial over-approximation (for each point,
it is the set of all the RTL variables), and the result of a standard liveness analy-
sis [Appel 1998a]. One could also support semi-pruned forms, by instantiating live as
the result of the block-local liveness analysis of [Briggs et al. 1998]. All these three
liveness information can be shown to be well-formed.

Example 5.1 (Liveness information). In the last column of the table in Figure 9, we
give the liveness information calculated about the variables of the initial RTL function.
This information will be used by the validator for validating the pruned SSA form of
the program in Figure 9. For instance, the variable y is live at node 3, since it is used
at node 3. This variable is however dead (i.e. not live) at point 1 because it is defined
(but not used) at this point of the program: it is hence redefined before it is used. At
point 6, neither x or y are live. Indeed, the variable x is defined (but not used) at this
point (thus redefined before being used at point 9) and the variable y is not used on
any path starting at point 6.

5.1.2. Typing rules for instructions. The type system for instructions checks that RTL-like
instructions make a correct use of variables, and that they do not redefine parameters.
Its formal definition is given in Figure 10.

Judgments are of the form {γ} ins {γ′}. Intuitively, the judgment is valid if each
variable x is used in ins with the index (γ x), and γ′ maps each variable to its last def-
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hypothesis ASSIG in Figure 9: we have to show that variable x and (x, (� pc0 x))
have the same value in the new register states, and this is the case, thanks to con-
straints we impose on the format of �-blocks, as well as the hypothesis USES in
Figure 9: if the kth argument of the �-instruction is (x, j), then it means that
(� pc x) = j, and we can conclude using the agreement of register states at pc.

All other cases are treated similarly in the full formalization, except for executing a
function return, where we need to use some invariants about register states of the caller
just before executing the function call (available in the match stackframe predicate).
This concludes the proof of the theorem.

B Proof sketch of wt strict

Theorem wt_strict: 8 f tf � live,
wf_live f live! wt_function tf � live!
8 (xi : SSA.reg) (u d : node), use tf xi u! def tf xi d! dom tf d u.

Under the hypotheses, suppose (use tf xi u) and (def tf xi d). Suppose that xi
is (x, i). The result is immediate when u = d. Now, suppose they are different, and that
¬ (dom tf d u). Then, there exists a path p from the entry of tf to u that does not go
through d. But (use tf xi u), thus (� u x) = i (which we show as an auxiliary lemma).
It remains to show that x is live at u in order to conclude a contradiction by using the
following lemma:
Lemma gamma_def: 8 f tf � live, wt_function f tf live � ! wf_live f live!
8 p pc x i d, path tf (fn_entrypoint tf) p pc! def tf (x,i) d!

(� pc x) = i! x 2 (live pc)! In d (pc::p).
Del: use code et use ph-
icode When (use code tf xi u), we simply use the fact that (wf live f live) and (structural spec f tf).

Now, if (use phicode tf xi u), we use the well-typedness of the edge from u to the
�-block at, say, pc. The register (x, i) is an argument, and hence a version for x is
assigned in the block. The type system specification demands that x is live at pc. We
hence know x is live at u, thanks to the wf incl field of (wf live f live) record, and
the fact that x cannot be assigned at pc (the function is normalized).
C Stuff

pc (� pc x) (� pc y) (live pc)
0 0 0 {x}
1 0 0 {x}
2 0 1 {x, y}
3 0 2 {x, y}
4 0 2 {x, y}
5 0 3 {x, y}
6 0 0 {x}
7 0 2 {x}
8 2 0 {x}
9 3 0 {x}
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Fig. 9: An RTL program, its pruned SSA form and a valid typing information

inition after execution of ins. The typing rules are formalized as an inductive relation
wt_instr. We briefly comment on some rules.

Several rules correspond to instructions that do not define variables, so the input and
output local typings are equal. For such rules, one simply checks that the instruction
makes a correct use of variables (through use_ok). This is trivially true for instruction
(Inop pc) and every local typing γ. The rule for Icond checks that the variables used in
the guard are consistent with the local typing input.

In the case of the instruction Iop, which defines the variable (r, i), the output local
typing is γ[r← i], i.e. the input local typing updated for the initial variable r. From
this program node onwards, the new version for r is the one indexed with i, and this
is the one that should be used later on, until another version for r is defined.

The type system relies on the following convention for function parameters: each of
them is given a default index dft (in the example of Figure 9, the default index is 0).
The first phase of the validator (check_unique_def) ensures that parameters are not
redefined inside the body of the function.

Example 5.2 (Typing instructions). We illustrate instruction typing with Figure 9.
Consider the input local typing at point 3. The uses of x0 and y2 are consistent with it,
since (Γ 3 x) = 0 and (Γ 3 y) = 2. The definition of x2 at node 6 makes the local typing
change for variable x between nodes 6 and 8: it changes from (Γ 6 x) = 0 to (Γ 8 x) = 2.

5.1.3. Typing rules for edges and functions. The typing rules for edges ensure that φ-blocks
make a correct use of definitions with regards to a global typing Γ. There are two
rules—modelled by the clauses of the inductive relation wt_edge in Figure 10.

The first rule considers the case where the edge does not end in a join point. In this
case, typing the edge is equivalent to typing the corresponding instruction.

The second rule considers the case where the edge ends in a junction point: the
typing rule checks the φ-block attached to it—structural constraints impose that the
instruction is an Inop, so we do not need to type-check it. There are three constraints:

— USES ensures that the φ-arguments args passed to φ-functions are consistent with
all incoming local typings: its kth argument should be the version of the initial vari-
able brought by the kth predecessor of the join point. We omit the formal definition
of phiuse_ok

— ASSIG ensures that the output local typing is consistent with the definitions in the
φ-block

— NASSIG ensures that, if the variable is not assigned in the φ-block, then it means
that either it is dead, or the incoming indices for this variable are the same for all
predecessors
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Definition use ok (uses:list SSA.reg)(γ:ltype):= ∀ r i, In (r,i) uses → γ r = i.

Inductive wt instr: ltype → SSA.instr → ltype → Prop :=
| wt Inop: ∀ γ s,

{γ} Inop s {γ}

| wt Istore: ∀ γ chk addr args s src,
use ok (src::args) γ →
{γ} Istore chk addr args src s {γ}

| wt Icond: ∀ γ cond args s1 s2,
use ok args γ →
{γ} Icond cond args s1 s2 {γ}

| wt Ireturn some: ∀ γ r,
use ok [r] γ →
{γ} Ireturn (Some r) {γ}

| wt Ireturn none: ∀ γ,
{γ} Ireturn None {γ}

| wt Iop: ∀ γ op args s r i,
use ok args γ →
{γ} Iop op args (r,i) s {γ[r ← i]}

| wt Iload: ∀ γ chk addr args s r i,
use ok args γ →
{γ} Iload chk addr args (r,i) s {γ[r ← i]}

| wt Icall: ∀ γ sig args s id r i,
use ok args γ →
{γ} Icall sig id args (r,i) s {γ[r ← i]}

Inductive wt edge (f:SSA.function)(Γ:gtype)(live:Regset.t):node → node → Prop:=
| wt edge not jp: ∀ i j ins

(NOTJP: fn code f i = Some ins ∧ fn phicode f j = None)
(WTI: {Γ i} ins {Γ j}),
wt edge f Γ live i j

| wt edge jp: ∀ i j ins block
(JP: fn code f i = Some ins ∧ fn phicode f j = Some block)
(USES:∀ args r k, In (Iphi args (r,k)) block → phiuse ok r args (preds f j) Γ)
(ASSIG: ∀ r k, assigned (r,k) block → r ∈ live ∧ (Γ j r) = k)
(NASSIG: ∀ r, (∀ k, ¬ (assigned (r,k) block)) → (Γ i r = Γ j r) ∨ r 6∈live),
wt edge f Γ live i j.

Definition wt function (f:SSA.function)(Γ:gtype)(live:node → Regset.t): Prop:=
(∀ i j, is edge f i j → wt edge f Γ (live j) i j)

∧ (∀ i r, fn code f i = Some (Ireturn r) → {Γ i} Ireturn r {Γ i})
∧ (∀ p, In p (fn params f) → ∃ r, p = (r, Γ (fn entrypoint f) r)

∧ (Γ (fn entrypoint f) r) = dft).

Fig. 10: Type system
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Example 5.3 (Typing φ-functions). In Figure 9, the φ-function for x at point 9 makes
correct uses of it because its first argument x0 matches (Γ 7 x) = 0 and x2 matches
(Γ 8 x) = 2. The local typing at node 9 takes into account the definition of x3 in the
block by setting (Γ 9 x) to 3. Moreover, no φ-function is required for y at node 9 since
y 6∈ (live 9), and no φ-function is required for x at node 3, since (Γ 2 x) = (Γ 5 x).

Finally, a function is well-typed with regards to global typing Γ if the local typing
induced by Γ at the entry node fn_entrypoint is consistent with the parameters, and
all edges and return instructions are well-typed. Return instructions do not correspond
to any edge, we thus need to add this constraint explicitly.

5.2. Strictness
All SSA programs accepted by the type system are in strict SSA form. It follows that
only well-formed SSA functions will be accepted by the validator.
Theorem wt strict: ∀ f tf Γ live,

wf live f live →
wt function f tf Γ live →
∀ (xi: SSA.reg) (u d: node), use tf xi u → def tf xi d → dom tf d u.

The proof of wt_strict relies on two auxiliary lemmas (explained below) about local
typings for well-typed functions. The first lemma states that if a variable xk is used at
node i, then it must be that (Γ i x = k).

Lemma use gamma : ∀ f tf Γ live,
wf live f live →
wt function f tf live Γ→
∀ x i u, use tf (x,i) u → Γ u x = i.

The second lemma states that, whenever (Γ i x = k), the definition point of variable xk
dominates i.
Lemma def gamma : ∀ f tf Γ live,

wf live f live →
wt function f tf live Γ→
∀ x i d, Γ u x = i → def tf (x,i) d → dom tf d u.

Under the hypothesis wt_strict, suppose that xi is used at point u and defined at
point d. By use_gamma, we get that (Γ u x) = i. We conclude by applying def_gamma to
get that d dominates u.

5.3. Soundness
The SSA generation phase, as any other phase of a formally verified compiler must
be proved correct in the following sense: all behaviors of the SSA form tf are also be-
haviors of the corresponding initial RTL function f. In our case, where tf is generated
by the untrusted generator and validated a posteriori, we have to prove that if the
validator accepts the pair f and tf, then all behaviors of tf are also behaviors of f.

CompCert already provides the general result that a lock-step forward simulation
implies preservation of behaviors2, it is thus sufficient to exhibit such a simulation, un-
der the assumption that the validator accepts the pair of programs (i.e. all pairs of RTL

2Technically, a forward simulation implies a backward simulation if the target language is deterministic
and the source language is receptive. It is straightforward to prove that SSA is deterministic, but this is not
required. Indeed, in CompCert, a forward simulation is first exhibited for each pass of the compilation. Then,
they are composed together into a global forward simulation (from deterministic C down to ASM), which
implies a backward simulation, thanks to the determinism of the ASM language and the receptiveness of
the deterministic variant of C.

ACM Transactions on Programming Languages and Systems, Vol. Vol, No. Num, Article Art, Publication date: May Year.



Formal Verification of an SSA-based Middle-end for CompCert Art:19

and SSA functions in these two programs pass the validator presented in Section 5.1).
Such a simulation consists of the three following lemmas:
Variable prog:RTL.program.
Variable tprog:SSA.program.
Hypothesis valid OK : SSA validator prog tprog = true.

Lemma match initial states:
∀ s1, RTL.initial state prog s1 →
∃ s2, SSA.initial state tprog s2 ∧ s1 ' s2.

Lemma match final states:
∀ s1 s2 r, s1 ' s2 → RTL.final state s1 r → SSA.final state s2 r.

Lemma match step :
∀ s1 t s2, RTL.step (genv prog) s1 t s2 →
∀ s′1, s1 ' s′1 → ∃s′2, SSA.step (genv tprog) s′1 t s′2 ∧ s2 ' s′2.

where the binary relation ' between semantic states of RTL and SSA carries the in-
variants needed for proving behavior preservation.

5.3.1. Simulation relation. In particular, ' should track the correspondence between the
registers of semantics states. To do so, we need to capture the semantics of local typ-
ings, that specify the correspondence between the variables of f and tf. This corre-
sponds to the following property:
Definition agree (γ:ltype) (rs:RTL.regset) (rs’:SSA.regset) (live:Regset.t):=
∀ r, r ∈ live → rs#r = rs’#(r, γ r).

This intuitively means that the value of an initial RTL register r is equal to the value
of its current version (r, γ) (determined by the local typing γ) in the SSA function. The
idea is then to require that, after each computation step, the register states of the RTL
and SSA functions agree, with respect to the local typing at the current program point.
Note that we will be able to prove such a correspondence only for live variables, and
that it is actually sufficient for proving behavior preservation.

Now, defining ' only in terms of agreement is not enough to make the proof of simu-
lation go through. We have to constrain more the way RTL and SSA states match. For
instance, matching states should have the same memory states and stack pointers.
Further, their program counters should be equal. Finally, we add locally to the rela-
tion ' other invariants relative to the function descriptions of semantic states (e.g. the
well-formedness of the SSA function and the well-typedness of the pair of functions).

Formally, the ' relation is defined with the inductive match_states below, where we
omit, for the sake of brevity, the case for relating semantic states of function calls.
Inductive match states : RTL.state → SSA.state → Prop :=
| match states reg: ∀ s f sp pc rs m ts tf rs’ Γ live

(STACKS: match stackframes s ts)
(SPEC: wt function f tf Γ live)
(SSA: wf ssa function tf)
(LIVE: wf live f live)
(AGREE: agree (Γ pc) rs rs’ live),
(RTL.State s f sp pc rs m) ' (SSA.State ts tf sp pc rs’ m)

| match states return: ∀ s v m ts
(STACKS: match stackframes s ts),
(RTL.Returnstate s v m) ' (SSA.Returnstate ts v m)

where "s' t" := (match states s t).

Note that we also define a matching relation for stackframes. This relation basically
lifts the invariants of the current functions to the whole callstack of '. This way, at
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each function call return, the invariants for the caller are available through the match-
ing relation over the stackframes of the callee. This avoids to define (rather clumsily)
a global hypothesis on the pair of whole RTL and SSA programs stating the invariants
hold for all the functions composing the programs.

5.3.2. Proof sketch. The proof proceeds by nested case-analysis on the kind of se-
mantic state of s1, the relation ', and intruction at the program point under
consideration. We treat here the main cases, which are when the instructions
are (i) Iop and (ii) Inop when a φ-block is attached at its successor point. Con-
sider s1 = (RTL.State s f sp pc rs m) and s1′ = (SSA.State ts tf sp pc rs′ m), such that
(agree (Γ pc) rs rs′ (live pc)).

— Suppose (Iop op args res pc′) is the instruction at pc in f. Hence, f makes a
step towards the state s2 = (RTL.State s f sp pc′ (rs#res← v) m). By the hypoth-
esis (structural_spec f tf), we know that there is, at point pc in tf, an instruction
(Iop op args′ (res, i) pc′), and syntax normalization ensures that pc′ is not a junc-
tion point. Hence, no φ-block is attached to it in tf: the matching state is thus
s2′ = (SSA.State ts tf sp pc′ (rs′#(res, i)← v) m). In fact both expressions defined
by op and respectively args and args′ evaluate to the same value v: first, the in-
struction is well-typed, so that it makes correct uses of its variables, with regards to
(Γ pc). Second, rs and rs′ agree w.r.t (Γ pc). Finally, all uses are live, by hypothesis
on live. Finally, resulting states are still in the relation ', since the update of the
local typing specified by the typing rule of the edge (pc, pc′) takes into account the
actual update of the register states in the semantic step.

— Suppose now (Inop pc′) is the instruction at pc in f, with pc′ a junction point.
In this case, s2 = (RTL.State s f sp pc′ rs m). We here take for matching state
s2′ = (SSA.State ts tf sp pc′ (phi_store k p rs′) m) where p is the φ-block at pc′ and
k is such that index_pred tf pc pc′ = Some k. To show the resulting states stay in
the relation, we prove that executing a φ-block preserves the agreement between
register states (as long at the edge (pc, pc′) is well typed. Let x be an RTL variable
that is live at pc′. Then, we know that it is live at pc, by the definition of wf_incl
and normalization.
If no version of x is assigned in the block, then we use the agreement between
rs and rs′ at pc. Otherwise, we reason similarly to the case for Iop. We first use
hypothesis ASSIG in Figure 10: we have to show that variable x and (x, (Γ pc′ x)) have
the same value in the new register states, and this is the case, thanks to constraints
we impose on the format of φ-blocks, as well as the hypothesis USES in Figure 10: if
the kth argument of the φ-function is (x, j), then it means that (Γ pc x) = j, and we
can conclude using the agreement of register states at pc.

All other cases are treated similarly in the full formalization, except for executing
a function call or return. At function call, we have to prove a partial invariant about
the caller (that holds just before calling the function), and the invariants for the callee.
The former will then be used at the callee’s return, for establishing the rest of the
invariant.

5.4. Completeness of the type system
An essential property of our type system is that it accepts all the SSA programs gen-
erated by the algorithm by Cytron et al. [1991].

THEOREM 5.4 (TYPE SYSTEM COMPLETENESS). Let f be a normalized RTL func-
tion and let tf be the SSA function generated from f by Cytron et al.’s algorithm. Then
there exists Γ such that SSA validator f tf Γ = true.
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Proving this theorem requires identifying some key properties about the algorithm
presented in [Cytron et al. 1991], which we recall in the Section 5.4.1. Given this spec-
ification, we show in Section 5.4.2 how to build a global typing, that we prove valid in
Section 5.4.3.

This proof is not formalized in the Coq proof assistant. It would require formalizing
the specification in Coq, and proving that the actual running algorithm satisfies this
specification. Hence, we would not need to run the validator anymore: by the soundness
of our type system, we could deduce a full correctness proof of the SSA generation
algorithm a la Cytron.

5.4.1. Specification of Cytron et al.’s algorithm. We first review the well-known characteri-
zation of the iterated dominance frontier as a fixpoint of the join operator J , as well as
some properties of the Cytron et al.’s algorithm.

Definition 5.5 (Join operator J). Given a set S of nodes, J(S) is defined to be the set
of all nodes j such that there are two non empty CFG paths that start at two distinct
nodes in S and converge at j, i.e. they both end at j.

LEMMA 5.6 (ITERATED DOMINANCE CHARACTERIZATION). For any set of nodes S,
the iterated dominance frontier of S, DF+(S) satisfies DF+(S) = J(S ∪DF+(S)).

PROOF. See [Cytron et al. 1991], page 467.

Let f be an RTL function, and tf the SSA form generated by Cytron’s algorithm.
For a variable x of f, we write defx the set of definition points of x in f, and def(x) for
the (unique) definition point of the variable in tf. We express now the way Cytron’s
algorithm defines the set of definition points of the versions of x in tf, and how it
determines the right index to use in tf when x is used at some point in f.

LEMMA 5.7 (MINIMAL SSA - DEFINITIONS). Define Dx = defx ∪ DF+(defx). Dx is
the set of program points where an instance of x is defined in tf, and DF+(defx) is the
set of nodes where a φ-function for x is inserted.

PROOF. Theorem 2 in [Cytron et al. 1991], page 468.

LEMMA 5.8 (MINIMAL SSA - ABSENCE OF φ-FUNCTION). If no instance of a vari-
able x is assigned in the φ-block at node n, then a single definition of an instance of x
reaches all predecessors of n, without any other instance of x is defined in between.

PROOF. The set of φ-functions required for the variable x is by definition
J+(defx) [Cytron et al. 1991]. We conclude using the definition of the iterated join
operator J+.

COROLLARY 5.9. If no instance of a variable x is assigned in the φ-block at node n,
then there exists an instance xk of x whose definition strictly dominates n.

PROOF. The definition of xk reaches all predecessors of j, and no instance of x is
defined in between. In particular, xk is defined at a common ancestor of all the prede-
cessors of j. def(xk) dominates all predecessors of j. It thus dominates j.

LEMMA 5.10 (MINIMAL SSA - USES). If x is used at point i in f, the variable xk
will be used at point i in tf, where xk is the instance of x such that def(xk) ∈ Dx is the
closest ancestor of i in the dominator tree of f.

PROOF. See Lemmas 9 and 10 in [Cytron et al. 1991], pages 473-474.
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5.4.2. Building a witness global typing. Let f be an RTL function, and tf the SSA form
generated by Cytron et al.’s algorithm. We explain now how to build a global typing
Γ by a depth-first-search (DFS) traversal of the CFG of tf. Each time we reach a new
program point j in the DFS, one of its predecessors i in the CFG has already been
treated and (Γ i) is already defined. To define (Γ j), we distinguish two cases:

Case 1 If j is not a join point, for every RTL variable x, we define (Γ j x) by case
analysis:
— if no instance of x is assigned at i in tf, then we set Γ j x = Γ i x;
— if some instance xk of x is assigned at i in tf, then we set Γ j x = k;

Case 2 If j is a join point, for every RTL variable x, we define (Γ j x) by case analysis
on the φ-block b at j:
— if no instance of x is assigned in b, then we set Γ j x = Γ i x;
— if some instance xk of x is assigned in b then we set Γ j x = k.

The global typing given in Figure 9 can actually be computed using this construction.
Some properties about this witness global typing Γ can be derived, that we will use in
the proof of the next paragraph.

LEMMA 5.11 (WITNESS GLOBAL TYPING: PROPERTIES). If (Γ i x) = k, then there
exists xk such that def(xk) dominates i and any shortest CFG path p from def(xk) to i
(excluded) does not go through another definition of an instance of x, i.e. a point in Dx.

PROOF. We proceed by induction on the construction of Γ.

— Base case. For all variables x, (Γ Entry x) = dft for all x, and their definition point
is the entry point by convention. The condition on shortest paths is trivial since it
is empty.

— Induction case. Consider the CFG edge (i, j). We proceed by case analysis on j:
. Suppose j is not a junction point. By definition of Γ, there are two cases:
— (Γ j x) = k because xk is defined at i. Here, i dominates j, and the shortest

path from i to j contains only i and j.
— (Γ j x) = (Γ i x) because no instance of x is defined at point i. Applying the

induction hypothesis, we get that there is xk such that def(xk) dominates i
and the shortest path p from def(xk) to i does not go through another defini-
tion of an instance of x. But i dominates j. By transitivity of the dominance
relation, we get that def(xk) dominates j. The mininal path [def(xk); . . . ; i; j]
does not contain any other definition of an instance of x because i does not
define a version of x.

. Suppose now j is a junction point. There are again two cases.
— (Γ j x) = k because an instance xk is defined in the φ-block at point j. We

conclude by the reflexivity of dominance.
— (Γ j x) = (Γ i x) because no instance of x is defined in the φ-block at j. Let

(Γ i x) = k. Here, the induction hypothesis does not permit to conclude.
In this case, j is not in the iterated dominance frontier of any point in defx
(Lemma 5.8). Then, by Corollary 5.9, we get that def(xk) dominates j.

5.4.3. The witness global typing is a correct typing. Now we prove that tf is typable with Γ
as defined in the previous section. We first consider that tf has been generated with a
trivial live information full_live, containing at each program point the set of all the
RTL variables.
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We consider all edges (i, j) in the CFG of tf, and have to prove that the property
(wf_edge f Γ full_live i j) holds. We postpone the discussion of typing pruned and
semi-pruned SSA versions at the end of the paragraph.

First, we concentrate on verifying that the constraints on the variable definitions
are satisfied. We will check that the typing constraints about variables uses (predicate
use_ok in Figure 10) in a separated lemma.

LEMMA 5.12 (CONSTRAINTS ON DEFINITIONS). Let (i, j) be an edge in the CFG of
tf. Then (wf_edge f Γ full_live i j) holds except for constraints about variable uses.

PROOF. We distinguish two cases.

— Case 1. If j is not a junction point, then i is the sole predecessor of j in the CFG of tf,
and (Γ j) is defined in terms of (Γ i). In this case, we apply the rule wt_edge_not_jp.

— Case 2. If j is a junction point. We have to prove that rule wt_edge_jp is applicable.
We consider two cases.
— Case 2.1. If i is the predecessor of j in the DFS traversal, Γ j is defined in terms

of Γ i, and the constraints ASSIG and NASSIG hold by definition of Γ. Therefore
the edge is typable.

— Case 2.2. Let i′ be the predecessor of j in the DFS, and suppose i 6= i′. We have
to prove that ASSIG and NASSIG hold. Let b the φ-block at point j.

ASSIG. Let xk be assigned in b. The live information we use here is
full_live, thus x is live at point j. Additionally, we have (Γ j x) = k by
construction.
NASSIG. Let x be an RTL variable such that no instance of x is assigned in
block b. Because we use full_live, we have to show that (Γ j x) = (Γ i x).
By definition of Γ, we know that (Γ j x) = (Γ i′ x). It is thus sufficient to
prove that (Γ i x) = (Γ i′ x).
If the property would not hold, one could conclude from the Lemma 5.11
that there exist two distinct points ` and `′ such that a definition of an
instance of x occurs in ` and `′ and there is a path from ` (resp. `′) that
reaches i (resp. i′) without meeting any other point in Dx. This implies that
j ∈ J(Dx) = DF+(defx). This leads to a contradiction, as it would mean that
j holds a φ-node for x (Lemma 5.7). Therefore, an instance of x should be
assigned by a φ-function in b. This is a contradiction.

This shows that tf is typable with Γ, except for constraints about uses.

LEMMA 5.13 (VARIABLE USES). Let (i, j) be an edge in the CFG of tf. Whenever an
instance xk of x is used at point i in tf, we have (Γ i x = k).

PROOF. Suppose that (Γ i x = k′), with k′ 6= k. Then, by Lemma 5.11, we know that
def(xk′) dominates i. But xk is used at point i. By Lemma 5.10, we hence know that
def(xk) dominates i. Hence, pk = def(xk) and pk′ = def(xk′) both dominate i. Therefore,
by the property of the dominance relation, either pk dominates pk′ or pk′ dominates pk.
We distinguish three cases:

— Case 1. If pk = pk′ , we can conclude directly.
— Case 2. Suppose pk strictly dominates pk′ . In this case, p′k would be between pk

and i in the dominator tree. Then, the closest ancestor of i in the dominator tree
that belongs to Dx would be pk′ , and the index used for x at point i should be, by
Lemma 5.10, p′k. This is a contradiction.

— Case 3. Suppose pk′ strictly dominates pk. Then, by antisymmetry of the dominance
relation, pk does not dominate pk′ . This means that there exists a CFG path p from
the entry to pk′ that does not go through pk.
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But (Γ i x) = k′. Thus, by Lemma 5.11, we know it exists a CFG path p′ from pk′ to
i that never meets another point in Dx.
The concatenation of p and p′ gives us a path from the entry node of the CFG to i,
that never goes through pk. This contradicts the fact that pk dominates i.

COROLLARY 5.14 (CONSTRAINTS ON VARIABLE USES). Let (i, j) be an edge in the
CFG of tf. Then the constraints on the variable uses in (wf_edge f Γ full_live i j) are
satisfied.

Completeness with regards to pruned-SSA form can be shown easily by observing
that both the algorithm and the type system make the same use of the liveness infor-
mation (a dead initial variable does not require a φ-function).

5.5. Implementation
For the sake of clarity, we have described a non executable type checker which assumes
that structural constraints are satisfied. For efficiency reasons, the Coq implementa-
tion of the type system is in fact a bit more complex. In particular, it performs type
inference rather than type checking. Additionally, it performs a single, linear scan of
the program, and checks the list of arguments of φ-functions only once per junction
point, rather than once per incoming edge for a given join point.

On the benchmarks given in Section 9.2, our implementation is ten times faster than
a type checker derived naively from the non executable type system of Figure 10. We
now give an overview of the implementation.

The untrusted SSA generator does not actually compute the whole code of the SSA
form of a function. It provides the type checker only with the information that is nec-
essary, namely where to add φ-blocks, and how to rename variables definitions in the
SSA function – the renaming of variables uses is done directly in Coq. We call this
information a hint. It is made of two maps. The first map, of type (PTree.t index), as-
sociates to each CFG node (the keys of the map represent positive program points)
the index of the variable that this node potentially defines. The second map, of type
(PTree.t (PTree.t index)), provides the same kind of information for φ-blocks: for a
given CFG node (a key in the outter PTree.t), it indicates whenever a block is re-
quired (in which case a (PTree.t index) is associated to this key), and in this case,
what indexes must be used for the variables defined in that block (here, the keys of the
(PTree.t index) denote initial RTL variables, and the associated data are indices). The
signature of the external generator for SSA is thus the following:

Definition SSA hint := (PTree.t index) ∗ (PTree.t (PTree.t index)).
Variable extern SSA gen: RTL.function → (node → Regset.t) → SSA hint.

Then, given this hint, both the type inference and the code generation (along with
the structural checks on the generated code) will be performed simulatenously by the
following function:
Definition type infer:

RTL.function → (node → Regset.t) → SSA hint → option SSA.function := ...

Since the hint might be incorrect, the type inference may not be able to generate any
SSA function, hence the option type of its result. This type inference builds a global
typing Γ using the SSA hint, in a way that is similar to the algorithm described in
Section 5.4. We then prove that, whenever the inference is successful, the generated
function is well typed in the type system described in Figure 10. This is captured by
the following theorem:
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Theorem type infer correct: ∀ f tf live hint,
wf live f live →
type infer f live hint = Some tf →
∃ Γ, SSA validator f tf Γ = true.

Finally, our SSA generation algorithm is described by the following snippet.

Definition ssa gen (f: RTL.function) : option SSA.function :=
let live := (LiveAnalysis f) in
let hint := extern gen ssa f live in
type infer f live hint.

First, a liveness analysis (implemented in Coq) is performed on the RTL function. This
liveness information is shared by the external, untrusted SSA generator (written in
OCaml) and the type inference. The external SSA generator computes the information
(hint) required for the type inference to perform the actual SSA code generation, whilst
verifying the validity of the hint.

6. THE SSA EQUATION LEMMA
In this section, we introduce the equation lemma that supports the view of programs
in SSA form as systems of equations. We then illustrate how to reason about a simple
SSA-based optimization, namely copy propagation. Using the equation lemma, we will
be able in Section 7 to formalize and prove correct a GVN optimization.

6.1. Equation lemma

7

27/04/11
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The SSA representation provides an intuitive reading of
programs: one can view the unique definition of a vari-
able as an equation, and by extension one can view SSA
programs as systems of equations.

Because every assignment creates a new value
name it cannot kill (i.e. invalidate) expressions
previously computed from other values. In par-
ticular, if two expressions are textually the same,
they are sure to evaluate the same result. [Bran-
dis and Mössenböck 1994]

For instance, after at least one iteration, the definitions of
x3 and y1 respectively induce the two equations x3 = y1+1
(because x3 = x2 and x2 = y1 + 1) and y1 = x3 + 1. There
is however a pitfall: the two equations entail x3 = x3 + 2, and thus are inconsistent.
In fact, equations are only valid at program nodes dominated by the definition that
induce them, as captured formally by the equation-lemma of SSA:

Lemma equation lemma : ∀ prog d op args x succ f m rs sp pc s,
wf ssa program prog →

reachable prog (State s f sp pc rs m) →
fn code f d = Some (Iop op args x succ) →
sdom f d pc →
eval operation sp op (rs##args) m = Some (rs#x).

where reachable is a predicate that defines reachable states. In practice, it is often
convenient to rely on a corollary that proves the validity of the defining equation of
x at program points where x is used – thus avoiding reasoning on the dominance re-
lation. The formal statement of the corollary is obtained by replacing the hypothesis
sdom f d pc by the hypothesis use f x pc. The proof of the corollary intensively uses the
strictness property of well-formed SSA programs.
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6.2. Application with Copy Propagation
We conclude with a succinct account of applying the corollary to prove the soundness
of copy propagation (CP)—recall that CP will search for copies x := y and replace every
use of x by a use of y. Suppose pc is a program point where such a replacement has been
done. Every time pc is reached during the program execution, we are able to derive,
using the corollary, that rs#y = rs#x, where rs is the current register state because
(i) y is the right hand side of the definition of x and (ii) pc was a use point of x in the
initial program. In contrast, on non SSA forms, the reasoning would be more involved
since one would have to prove that the reaching definition for x is unique at pc, and
that no redefinition of y can occur in between.

7. VALIDATION OF GLOBAL VALUE NUMBERING
This typical SSA-based optimization assigns to variables an identifying number such
that variables with the same number will hold equal values at execution time. Several
variations of the optimization have been proposed [Alpern et al. 1988; Briggs et al.
1997]. They are generally presented as highly optimised iterative algorithms.

We follow [Alpern et al. 1988] but clearly separate the optimisation into two phases.
First, an untrusted analysis, written in OCaml, computes a numbering of SSA pro-
grams and for each program point where the numbering detects a redundant compu-
tation x := e, it provides a candidate y for replacing the previous operation by x := y.
In a second phase, a validator checks the numbering and the proposed assignment
simplification.

To achieve this separation of concerns it is useful to reconsider GVN from an abstract
interpretation point of view: the analysis computes a fixpoint in the abstract domain
of congruence partitions, where partitions are modelled as mappings N : reg→ reg
that map a register to the canonical register of its equivalence class (its number). The
abstract domain is ordered w.r.t. to a partial ordervGVN that coincides with the reverse
inclusion of equivalence kernels—recall that the equivalence kernel ofN is the relation
∼N defined by x ∼ y if and only if N x = N y.

N1 vGVN N2 iff ∼N1
⊇ ∼N2

The notion of valid numbering is formally defined in Figure 11. First, we define
for each numbering N the relation ≡N as the smallest reflexive relation identify-
ing: (i) registers whose assignments share the same operator and corresponding argu-
ments are equivalent w.r.t. N (predicate same_number) (ii) registers that are defined
in the same φ-block with equivalent arguments.Then, for a numbering N to be valid
(see GVN_spec), its equivalence kernel must not contain a pair of distinct function pa-
rameters and it must moreover be included in ≡N . The latter ensures the intended
post-fixpoint property: if we note nparam the numbering that associates each register to
itself if it is a function parameter and a default register otherwise, then (GVN_spec N )
is equivalent to F (N ) vGVN N with F the operator defined by F (N ) = nparam ∩ ≡N .

GVN_spec N iff nparam ∩ ≡N vGVN N
Viewing the result of the analysis as a post-fixpoint is the key to our second compo-

nent, a validator that checks whether a numbering N is indeed a post-fixpoint of the
analysis on a program p, and if so returns an optimized SSA program tp. The valida-
tor is programmed in Coq, and is accompanied with a proof that optimized programs
preserve the behaviors of the original programs.

The crux of the correctness proof of the GVN validator is the correctness lemma for
a valid numbering: if N is a valid numbering for f, and rs is a register state that can
be reached at node pc, and x and y are two registers whose definition strictly dominate
pc, then N x = N y entails that rs holds equal values for x and y:
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Inductive ≡N : reg → reg → Prop :=

| GVN refl : ∀ x, ≡N x x
| GVN Iop : ∀ x y pc1 pc2 op args1 args2 pc1’ pc2’

fn code f pc1 = Some(Iop op args1 x pc1’) → same number N args1 args2 →
fn code f pc2 = Some(Iop op args2 y pc2’) → ≡N x y

| GVN Phi : ∀ x y pc args x args y
fn phicode f pc = Some phib → same number N args x args y →
(Iphi args x x) ∈ phib → (Iphi args y y) ∈ phib → ≡N x y.

Definition GVN spec (N:reg → reg) : Prop :=

(∀ x y, N x = N y → param f x → param f y→ x=y)∧(∀ x y, N x = N y → ≡N x y).

Fig. 11: Valid numbering

Lemma valid numbering correct : ∀ prog s sp pc rs m,
wf ssa program prog → GVN spec N→
reachable prog (State s f sp pc rs m) → gamma N pc rs.

where gamma is defined by
Definition gamma (N:reg → reg) (pc:node) (rs: regset) : Prop :=
∀ x y: reg, def sdom f x pc → def sdom f y pc → N x = N y → rs#x = rs#y.

and def_sdom f x pc states that the definition of x in f strictly dominates pc. The defi-
nition of def_sdom given below takes care of the case where x is assigned in a φ-block
at pc (written assigned_phi f pc x). Indeed, a φ-block at pc is actually executed before
reaching pc while a normal assignement at pc will takes effect after leaving pc.
Inductive def sdom (f:function) (x:reg) (pc:node) : Prop :=
| def sdom def sdom : ∀ def x,

def f x def x → sdom f def x pc →¬ assigned phi f pc x → def sdom f x pc
| def sdom def phi :

assigned phi f pc x → def sdom f x pc.

Let us illustrate the gamma property with Figure 3. Registers x2 and y2 share the
same numbering: they are indeed equal just after the assignment of y2 but not before.

Next, we describe the Coq implementation for optimizing SSA programs. The imple-
mentation takes as input a numbering N , and a partial mapping crep that takes as
input a register x and node pc and returns, if it exists, a register y such that x and y
are related by the equivalence kernel of N , and the definition of y strictly dominates
pc. For efficiency reasons, we do not check the correctness of crep a priori, but lazily
during the construction of the optimized program. The optimizer proceeds as follows:
first, it checks whether N satisfies the predicate GVN_spec. Then, for each assignment
(Iop op args x pc) of the original SSA program, the optimizer checks whether crep
provides a canonical representative y for x at node pc. If so, it checks whether the def-
inition of y strictly dominates pc. This is achieved by means of a dominance analysis,
computed directly in Coq with a standard dataflow framework a la Kildall3. Provided
y is validated, we can safely replace the previous instruction by a move from y to x.

We conclude by commenting briefly on the soundness proof of the transformation. It
follows a standard forward simulation proof where the correctness of the numbering

3Computing the dominance analysis with a basic Kildall dataflow can lead to a cubic worst case execution
time. We did not encounter any major execution slowdown in our experiments but integrating a more effi-
cient dominance computation would still be valuable for further usage of our SSA middle-end. Recently, Zhao
and Zdancewic [2012] have formalized in Coq a faster dominance computation based on Cooper-Harvey-
Kennedy algorithm [Cooper et al. 2000]. This non-trivial formalization work could replace advantageously
our current approach.
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is proved at the same time as the simulation itself. Noticeably, the CFG normalization
turned out to be extremely valuable for this proof. Indeed, consider a step from node pc
to node pc′: we have to prove that (gamma N pc′ rs) holds, asumming (gamma N pc rs).
We reason by case analysis: if the instruction at pc is not an Inop instruction, we
know by normalization that pc′ is not a junction point. In this case, (def_sdom f x pc′)
is equivalent to (def_sdom f x pc) ∨ (def f x pc) which is particularly useful to exploit
the hypothesis that (gamma N pc rs) holds.

8. CONVERSION OUT OF SSA
The final phase of the middle-end converts SSA programs back to RTL programs, so
that they can be further processed by the CompCert back-end, starting with register
allocation. Several approaches have been proposed [Sreedhar et al. 1999; Boissinot
et al. 2009]. As a first step, we decided to use the conversion described in [Cytron
et al. 1991]. The basic idea of this conversion is to substitute each φ-function with one
variable copy at each predecessor of the junction points:

27/04/11

i
x  :=Φ(x  ,x  )23 0

21

de-SSA

i

21

x  := x 03 x  := x  3 2

However, there are several pitfalls to avoid: performing naively the destruction of
SSA by such copy insertions can lead to the non preservation of behaviors. Two prob-
lems were identified by Briggs et al. [1998]: the presence of critical back-edges (that
can lead to the so-called lost-copy problem) and the swap problem. We review both
problems in the next sections, and explain how we tackle these two issues. As noted
in [Briggs et al. 1998], the swap problem is a particular case of the lost-copy problem
but we tackle the issues differently in our development. We finish this section with
an overview of the correctness proofs, that shows how the normalization phase can be
exploited.

8.1. Critical edges
In the presence of critical back-edges in the progran CFG, the simple copy insertion
described above becomes incorrect. We first recall the definition of a critical edge.

Definition 8.1 (Critical edge). A critical edge is an edge (i, j) whose entry i has sev-
eral successors and whose exit j has several predecessors.

Figure 12a describes the situation where the exit of the critical edge (i, j) holds
a φ-block. The problem here is that, the copies cannot be inserted at the predeces-
sors, because they would be executed on some paths that initially did not reach the
φ-function. This can lead to the well-known lost-copy problem in the presence of crit-
ical back-edges and optimizations such as copy folding (see [Briggs et al. 1998]). But
copies cannot either be inserted at the edge sink, because it would overwrite the values
coming from the others predecessors.

One solution to this problem is to split critical edges, as shown in Figure 12b. After
the critical edge (i, j) has been split, the copies for replacing the φ-function can be
safely inserted at the predecessors of the node holding the block (including the newly
inserted node k). Compilers that operate on basic-block CFG graphs carefully avoid
edge splitting for efficiency concern in later optimization stages. But this is at the cost
of making de-SSA algorithms significantly more complex.
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Fig. 12: Critical edges and naive copy insertion

In our case, the normalization we impose on SSA programs pleasingly ensures the
absence of critical edges in their CFG. One could fear that the critical edge splitting
implied by the normalization could impact later phases of the compiler, but the repre-
sentation of programs inherited from CompCert deflates this penalty cost. RTL graphs,
and thus SSA code graphs, are single-instruction graphs: replacing φ-functions with
copies automatically splits critical edges by the insertion of code.

8.2. The swap problem
One must also take care of the semantics of φ-blocks. They are given a parallel se-
mantics, and, because of optimizations, it is not in general equivalent to a sequen-
tial interpretation. Indeed, performing copy propagation on SSA can modify the code,
so that φ-functions argument and destination registers are no longer independent: a
variable xi can appear both as a source and a target of distinct φ-functions in a single
φ-block. In this case, the copies inserted for converting out of SSA must be sequen-
tialized. This can be done at the reasonable price of inserting at most one temporary
variable [Rideau et al. 2008].

In the current state of our development, our conversion out of SSA fails on such φ-
blocks. This is not a limitation in practice, as the GVN optimization we perform on
the code does not cause problems of that kind. From the SSA generation until its de-
struction, the parallel semantics of φ-blocks is ensured to be equivalent to the sequen-
tial one. We however plan to reuse the work of Rideau et al. [2008] which provides
an algorithm for transforming a set of parallel moves into an equivalent sequence of
elementary moves (using additional temporaries). This algorithm is already used in
CompCert when enforcing calling conventions during the compilation of function calls.

8.3. Correctness proof
For proving the transformation correct, we proceed by giving a forward plus simulation
between the SSA program and the RTL program after de-SSA. Indeed, the simulation
requires the RTL program to perform one or more steps to simulate the (big-step)
execution of a φ-block by the initial SSA program.

We also take advantage of the normalization in this proof: the execution of an Inop
instruction leading to a junction point with a φ-block matches the corresponding in-
serted copies. Without the normalization, all RTL-like instructions would have re-
sulted in a different case in the proof.

9. IMPLEMENTATION AND EXPERIMENTAL RESULTS
9.1. Coding effort, and ease of proof
We have plugged in CompCert 1.8.2 our SSA middle-end made of (i) a Coq normaliza-
tion (ii) an OCaml SSA generator and its Coq validator; (iii) an OCaml GVN inference
tool and its Coq validator; (iv) a Coq de-SSA transformation. Our formal development
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adds 15.000 lines of Coq code and 1.000 lines of OCaml to the 80.000 lines of Coq and
1.000 lines of OCaml provided in CompCert. It does not add any axioms to CompCert.

In terms of development effort, the whole work took approximately 1.5 person year.
Special care and successive refinements were necessary to make the verified SSA val-
idator sufficiently efficient, compared to the external, unverified SSA generator. We
also spent a significant time in simplifying the formal semantics of the SSA represen-
tation, while attempting to build a correctness proof of the GVN optimization. This
optimization has hence served has a fruitful stress test for our semantic design.

The strong invariants (i.e. strictness, the equation lemma, and the CFG normaliza-
tion that we propagate from RTL) we have in SSA facilitate optimizations design and
proof but, in turn, they must be provably preserved by the transformations. Currently,
the SSA optimizations of the middle-end do not modify the CFG of the function, so
well-formedness of SSA functions basically boils down to proving that strictness is pre-
served. In contrast, proving e.g. inlining or aggressive dead-code elimination would be
more involved in that respect. For GVN, the proof of strictness preservation is rather
trivial. Indeed, when at pc, we replace an operation (Iop op args x pc′) by a move in-
struction (Iop OMove [y] x pc′), we already know that the definition point of the variable
y strictly dominates pc. Also, we do not need to prove that the equation lemma is pre-
served by GVN, as it has been proved to hold for any well-formed SSA function.

In addition to the CFG normalization, the other design choice of our SSA form which
has shown to simplify the correctness proof of both the into- and out-of SSA phases
is the separate graph of φ-blocks. Moreover, this choice appeared to be neutral with
regard to the proof of GVN. More generally, we do not expect this φ-graph to cause any
strong limitation in the implementation (or proof) of other optimizations, as φ-blocks
must usually be handled as a special case (compared to the rest of the code).

9.2. Experimental evaluation
We use the Coq extraction mechanism to obtain an SSA-based certified compiler, that
we evaluate experimentally using the benchmark suite provided with the CompCert
distribution. These include around 75.000 lines of C code, and fall into three categories
of programs (from 20 to 5.000 LoC): small computation kernels, a raytracer, and the
theorem prover Spass4. Below we briefly comment on three key points: efficiency of the
SSA validator, effectiveness of the GVN optimizer, and efficiency of generated code.

9.2.1. Efficiency of SSA validator. In order to be practical, validators need to be fast
enough at compile time. Experimental results are surprisingly good: type-checking
the output SSA program is twice as fast as the overall conversion of a program into
SSA form. In more detail, the times for SSA generation—specialized to pruned SSA—
distribute as follows: (i) 9% for normalization of RTL; (ii) 37% for liveness analysis
of RTL5; (iii) 35% for conversion to SSA using the untrusted OCaml implementation
(based on state-of-the-art algorithms); (iv) 19% for validation using the verified valida-
tor. This distribution appears to be uniform on all benchmarks except on the biggest
functions where the liveness analysis exhibits a non linear complexity.

A possible alternative would be to compute a more efficient (i.e. linear), but less pre-
cise, liveness information (such as the one used for building a semi-pruned version of
SSA [Briggs et al. 1998]). This could, in theory, lead to a faster computation of live-
ness, but to an SSA form that is less compact, with more variable definitions and uses

4Spass is the largest (69.073 LoC), we only use it to evaluate the compilation time.
5This analysis, provided in the CompCert distribution, is a traditional backward data-flow analysis based
on Kildall’s worklist algorithm.
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x86 PPC
Iop LVN GVN GVN Iop LVN GVN GVN

only only
c. kernels 3,494 163 55 216 3,142 422 54 472
raytracer 2,303 131 29 159 2,755 303 21 322

spass 51,640 122 19 99 52,451 392 43 306
TOTAL 57,437 416 103 474 58,348 1,117 118 1,100

Table I: GVN optimizer (x86 and PowerPC backends) For each set of benchmarks,
we count the number of initial Iop in the RTL function (column Iop), the number of
Iop optimized away by the LVN-CSE optimization of CompCert (column LVN) and the
number of Iop optimized away by our GVN-CSE optimization, right after CompCert’s
LVN-CSE (column GVN). We also measure the number of Iop that GVN optimizes
away without any prior LVN-CSE (column GVN only).

to handle (i.e., in our setting, to both generate and check). During our experiments,
pruned SSA appeared to be best trade-off.

Beyond the evaluation of the validator relative to the whole SSA generation phase,
it would be interesting to measure the impact of SSA on the whole compilation time.
Measuring the into-SSA phase only (in isolation of the out-of-SSA and register alloca-
tion phases), would not give much information. However, to date, our de-SSA could be
improved: it would not be sufficient if we added new optimizations such as copy propa-
gation, and it introduces too many local registers (which puts the allocator in trouble,
as discussed in Section 9.2.3). Improving our de-SSA transformation, or even better,
building an allocator on top of SSA – with either techniques similar to [Boissinot et al.
2009] or [Hack et al. 2006] – would allow us to provide relevant measures of the impact
of SSA on compilation time. We leave this for future work.

9.2.2. Effectiveness of GVN optimizer. We measure the effectiveness of our GVN analyzer
by performing a GVN-based CSE right after a (Local Value Numbering) LVN-based
CSE implemented in CompCert. We count how many additional Iop instructions are
optimized away by this additional CSE phase. For efficiency concerns about the gen-
erated code, we need to keep the LVN phase that eliminates redundant memory loads
(currently, this is not done by our GVN optimizer). To keep the comparison fair, we
allow CompCert CSE to optimize around function calls—this is disabled in CompCert
to keep the register pressure low. The results are given in Table I, for two backends,
x86 (left) and PowerPC (right). The overall improvement is significant. Our global CSE
optimizes an additional 10% of Iop on PowerPC and an additional 25% on x86.

We also measure how the GVN behaves, without the preliminary LVN optimiza-
tion. Our global CSE manages to optimize all the Iop instructions that are optimized
away by LVN, except 2 for the small computation kernels, and 1 for the raytracer. For
Spass, however, GVN only optimizes half the number of Iop. This is due to the fact
that in CompCert’s LVN, the redundant load elimination and CSE optimizations are
interdependent (detecting some redundant loads helps in turn detecting new common
sub-expressions, and common sub-expression elimination can lead to extra load redun-
dancy detection).

9.2.3. Efficiency of the Generated code. To assess the efficiency of the generated code,
we have compiled the benchmarks with three compilers: CompCert, our version of
CompCert extended with a SSA middle-end (CompCertSSA), and gcc − O1. Figure 13
gives the execution times relative to CompCert (shorter bars mean faster) on PowerPC.
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Fig. 13: Execution times of generated code, normalized to CompCert

As the figure shows, our version of CompCert performs slightly better than CompCert.
On average (geometric mean), CompCertSSA code performs almost 2% better than
CompCert code (gcc − O1 performs 9% better). The test suite is too small to draw
definite conclusions, but the results are encouraging. In particular, adding the SSA
middle-end with a simple de-SSA phase does not anihilate the performance of the
generated code.

The performance on the integr micro-benchmark seems somewhat anomalous,
when comparing with gcc − O1. This can be explained by the fact that CompCert(SSA)
does not optimize leaf functions (i.e., functions which make no calls, and hence can run
more efficiently if they do not make their own register window), while gcc does. This
problem is however somewhat othorgonal to the evaluation of our middle-end.

During our experiments, we observed that the allocator sometimes produces a lot of
spill code. The quality of the allocation is impacted mainly by our current SSA decon-
struction, that introduces many copies and artificial interferences between variables
of a φ-block, imposing more constraints on the allocator. Again, we expect that perfor-
mance would improve significantly by refining our SSA deconstruction, and adapting
the register allocator. We leave this interesting challenge for future work. In particu-
lar, all the great potential shown by GVN in the above experiment, could be achieved
also in terms of execution time.

10. RELATED WORK
We focus on most closely related work and refer to [Leroy 2009] for an overview of
mechanized compiler correctness.

10.1. Machine-checked formalizations
Blech et al. [2005] use the Isabelle/HOL proof assistant to verify the generation of ma-
chine code from a representation of SSA programs that relies on term graphs. While
graph-based representations may be useful for the untrusted parts of our compiler,
they increase the complexity of the formal SSA semantics, and make it a greater chal-
lenge to verify SSA-based optimizations. They do not provide an algorithm to convert
into SSA form, and leave as future work proving the correctness of SSA-based opti-
mizations.
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Mansky and Gunter [2010] use Isabelle/HOL to formalize and verify the conversion
of CFG programs into SSA form. However, their transformation may yield non minimal
SSA, and does not aim extraction into efficient code. Moreover, it is not clear whether
their semantics of SSA can be used to reason about optimizations.

A line of work very close to ours is the Vellvm project. Zhao et al. [2012] formalize
the LLVM SSA intermediate representation in Coq. They define and relate several for-
mal semantics of LLVM, including a static and dynamic semantics. This parallel work
shares some similarities with ours concerning the semantics of φ-blocks, although they
do not normalize the function CFG, nor have a separate graph for φ-blocks. Zhao et al.
[2013] verify an SSA generation algorithm based on the algorithm of Aycock and Hor-
spool [2000], for the whole LLVM representation. The originality of LLVM’s SSA gen-
eration is that it starts from a trivial SSA form, where registers are spilled in memory
at the end of each basic block. This is intended to simplify the work of LLVM front-
ends. Then, and this is the hard formalization work, a register promotion algorithm
takes care of promoting the so-called allocas (i.e. variables local to functions whose
addresses can be taken) to registers. The transformation is modelled as a sequence
of micro (i.e small and local) transformations, e.g. dead store elimination and dead al-
loca elimination. Each micro-transformation is then proved correct, and the whole SSA
generation is proved correct as a combination of correct micro-transformations. Micro-
transformations are an interesting and promising approach. In our context, we had
more flexibilities. For instance, allocas do not exist in CompCert RTL representation,
as they have been eliminated in a prior transformation phase (from Csharpminor to
Cminor). Also, we were able to keep a strong correspondence between RTL names and
SSA names, and we have kept φ-blocks in a distinct code graph, so that the correspon-
dence with the initial RTL program can be easily checked. Another interesting point
of their work is the proof methodology they propose for a variety of properties. This
is a proof scheme that relaxes the need to consider all variables, thanks to the SSA
invariants. Indeed, when reasoning about a program state, only variables definitions
that strictly dominate the current program point need to be considered. They apply
this proof scheme to prove the equivalent of what we called here the equation lemma
(our equation lemma directly embodies the proof scheme), and the strictness property
(called the scoping lemma in [Zhao 2013]). In contrast to our work, Zhao et al. [2013]’s
SSA generation algorithm is indeed verified in a direct way (and not validated a poste-
riori), but it runs in quadratic time while our generator and its validator run in almost
linear time thanks to the Lengauer-Tarjan algorithm. However, as pointed out in [Zhao
2013], their SSA semantics has not yet been used to verify a representative SSA-based
optimizations such as GVN, while it constitutes (also in LLVM) a great leverage in
generated code performance.

Recently, Schneider [2013] proposed a very elegant approach to formalize SSA in the
Coq proof assistant. His work can be construed as a machine-checked formalization of
the view that “SSA is functional programming” [Appel 1998b]. Specifically, he consid-
ers an intermediate program representation, and equips it with two interpretations,
one functional, the other imperative. He analyzes the relationship between both. In
particular, he defines a notion of coherent program for which the two semantics coin-
cide, and define back-and-forth translations of programs to their coherent fragment,
for both interpretations. In this setting, SSA construction can be understood as turn-
ing an imperative program into a coherent, functional one. However, his formalization
is only given for a core language, and to our best knowledge, there is not ongoing effort
to integrate it into a verified compiler.

Finally, several machine-checked accounts of Continuation Passing Style (CPS)
translations exist, e.g. [Dargaye and Leroy 2007; Chlipala 2010], closely related to
conversion to SSA form. Chlipala [2010] verifies in Coq a compiler to an idealized as-
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sembly language from a small, untyped functional language with mutable references
and exceptions. The compiler includes a CPS intermediate representation, on which
optimization (CSE) is performed. In contrast to our work, the formalization uses a
big-step operational semantics. A great technical achievement of this work is to relax
the need of proving the numerous, administrative, and tedious lemmas about substi-
tution. For this, the author relies on the technique of parametric higher-order abstract
syntax [Chlipala 2008].

10.2. Translation validation and type systems
Menon et al. [2006] propose a type system that can be used to verify memory safety of
programs in SSA form, but their system does not enforce the SSA property. Matsuno
and Ohori [2006] define a type system equivalent to SSA: every typable program is
given a type annotation making explicit def-use relations. Their type system is similar
to ours except they type check one program w.r.t. annotations while we type check a
pair of a RTL and a SSA program. They show that common optimizations such as dead
code elimination and CSE are type-preserving. But they do not prove the semantics
preservation of the optimizations. Stepp et al. [2011] report on a translation validator
for LLVM. Their validator uses Equality Saturation [Tate et al. 2009], which views
optimizations as equality analyses. Their tool does not validate GVN. Tristan et al.
[2011] independently report on an a translation validator for LLVM’s inter-procedural
optimizations. This tool supports GVN, but is currently not certified.

11. CONCLUSION AND FUTURE WORK
The SSA form is a popular intermediate representation in the compilation community
that has been used with great success in many program optimizations since its incep-
tion in the late 80’s. The structural properties of unique definitions and strictness, as
well as the parallel semantics given to φ-blocks are the ingredients that led to this
success.

If those properties seems rather simple and intuitive, the algorithms underlying the
generation of SSA – that actually establish those properties – rely on complex prop-
erties of graphs (e.g. the dominator tree or dominance frontiers), that are difficult to
justify formally. Moreover, the very semantics of the SSA form has long resisted for-
malization. As a consequence, the correctness proof of SSA-related algorithms (i.e. gen-
eration, optimizations, and destruction), were until very recently not formally proved
correct. Over the past few years, some interesting attempts have be made to formalize
the semantics of SSA, but these formalizations were rather distant from the intuitive
semantics presented in the seminal papers. The correctness of SSA-based analyses and
optimizations is usually proved using structural arguments on the CFG only, and the
semantic properties and invariants of SSA remain unclear.

In this paper, we have defined a formal semantics for SSA, that is both close to the
intuitive definition of the early papers, and amenable for formal reasoning, as wit-
nessed by our fully verified SSA-based middle-end for the verified CompCert C com-
piler. Thanks to our choices made in the representation of programs, this semantics
integrates well in the CompCert architecture. The translation validation approach we
use for the conversion to SSA and the GVN optimization allows the middle-end imple-
menting state-of-the-art algorithms, while keeping close to the essence of those phases
and to the high-level properties they should satisfy in order to preserve the behaviors
of programs. The focused nature of our SSA validator makes it complete with regard
to one of the reference implementations of the SSA generators [Cytron et al. 1991],
where φ-functions placement is determined using dominance-frontiers. We also iden-
tified and isolated the semantic counterpart of the structural properties of SSA into a
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dedicated invariant lemma (holding at each execution step) on which the correctness
proof of several SSA-based optimizations rely.

Our work thus shows that verified compilers can rely on a realistic SSA-based
middle-end that implements state-of-the-art algorithms, and opens the way for a new
generation of verified compilers based on SSA. Notice that, in general, unverified SSA-
based compilers rely on efficient use-def chaining data structures (typically by impera-
tive, destructive constant-time linked-list operations) for implementing optimizations
very efficiently. In contrast, we had to implement our middle-end in a pure functional
language, in which it is not obvious how to take advantage of SSA’s efficient use-def
chaining. Implementing such chainings efficiently with functional data-structures is
an interesting engineering challenge, although, in our case, no performance bottle-
neck was yet encountered on this side.

A priority for further work is to achieve a tighter integration of our middle-end into
CompCert. There are three immediate objectives: (i) enhancing our SSA middle-end to
handle memory aliases as done by CompCert’s RTL-based middle-end, (ii) implement-
ing an SSA-based register allocator [Hack et al. 2006], and (iii) verifying more SSA-
based optimizations, including PRE [Chow et al. 1997], or lazy code motion [Knoop
et al. 1992]—we expect that our implementation of GVN will provide significant lever-
age there. Eventually, it should be possible to shift all CompCert optimizations into
the SSA middle-end.
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