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Abstract

Proof-Carrying Code (PCC) is a technique for downloading mobile code on a host
machine while ensuring that the code adheres to the host's safety policy. We show
how certi�ed abstract interpretation can be used to build a PCC architecture where
the code producer can produce program certi�cates automatically. Code consumers
use proof checkers derived from certi�ed analysers to check certi�cates. Proof check-
ers carry their own correctness proofs and accepting a new proof checker amounts to
type checking the checker in Coq. Certi�cates take the form of strategies for recon-
structing a �xpoint and are kept small due to a technique for �xpoint compression.
The PCC architecture has been implemented and evaluated experimentally on a
byte code language for which we have designed an interval analysis that allows to
generate certi�cates ascertaining that no array-out-of-bounds accesses will occur.

1 Introduction

Proof-Carrying Code (PCC) is a technique for downloading mobile code on a
host machine while ensuring that the code adheres to the host's safety policy.
The basic idea is that the code producer sends the code with a proof (in a
suitably chosen logic) that the code is secure. Upon reception of the code, the
code consumer submits the proof to a proof checker for the logic. Thus, in
the basic PCC architecture, the only components that have to be trusted are
the program logic, the proof checker of the logic and the formalisation of the
safety property in this logic. Neither the mobile code nor the proposed safety
proof have to be trusted. In his seminal work, Necula [20] axiomatises the
program using a Hoare-like logic. For a given safety policy, this logic comes
together with a veri�cation condition generator (VCGen) that generates lem-
mas, the proofs of which are su�cient to ensure the property. For each lemma,
a machine-checkable proof term has to be generated by the code producer. One
weakness of the initial approach is that the soundness of the veri�cation con-
dition generator is not proved but taken for granted, having as consequence
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that �there were errors in that code that escaped the thorough testing of the
infrastructure� [23].

The foundational proof carrying code (FPCC) of Appel [2,3] gives stronger
semantic foundations to PCC by generating veri�cation conditions directly
from the operational semantics rather than from some program logic, but the
proofs are accordingly more complicated to produce. An alternative approach
is presented by Nipkow and Wildmoser [27] who prove the soundness of a
weakest precondition calculus with respect to the byte code semantics for a
reasonable subset of Java byte code. Veri�cation conditions are proved using
a hybrid approach that use both trusted and untrusted provers. An exam-
ple of a trusted prover is the byte code veri�er that Klein and Nipkow have
formalised and proved correct in Isabelle [15]. Untrusted provers are external
static analysers that suggest potential (inductive) invariants. These invariants
are then reproved inside Isabelle to obtain a transmittable program certi�cate.

Abstract interpretation is another technique for proving invariants of programs
and Albert, Hermenegildo and Puebla have proposed to use the �xpoint gen-
erated by an abstract interpretation as the certi�cate. Their analysis-carrying
code approach [1] is a PCC framework for constraint logic programs in which
the checker veri�es that a proposed certi�cate is a �xpoint of an abstract
interpretation of the communicated program. This solves the problem of pro-
ducing the certi�cates automatically but requires the code consumer to take
for granted the semantic correctness of the abstract interpretation. It is thus
prone to the same objections as those made against the initial PCC frame-
work where the code consumer had to trust the correctness of the veri�cation
condition generator. In this paper we show how to improve on this situation
by developing a foundational PCC architecture based on certi�ed abstract in-
terpretation [7] which is a technique for extracting a static analyser from the
constructive proof of its semantic correctness. The technique produces at the
same time an analyser and a proof object certifying its semantic correctness.
This proof object can then be communicated to the code consumer for veri�ca-
tion. We describe how this leads to an infrastructure that allows to download
specialised proof-checkers carrying their own correctness proof (Section 2).
These proof checkers are derived automatically in a functorial way from a
certi�ed analysis.

An important issue in PCC is that of optimising (i.e., minimising) the size of
certi�cates. In the context of abstract interpretation-based PCC, this amounts
to the compression of �xpoints, as e.g. it is done in lightweight byte code ver-
i�cation [25,26]. In Sections 5 and 6 we propose a fully automatic �xpoint
compression algorithm that generates compressed certi�cates from the results
of untrusted static analysers. We have evaluated the feasibility of the approach
and the e�ciency of the �xpoint compression on the problem of communicating
proof that a byte code program will not perform any illegal array accesses. As
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part of this experiment we have de�ned (and certi�ed) an interval analysis for
byte code that combines the standard interval-based abstract interpretation
with a modicum of symbolic evaluation, resulting in a novel abstract domain
of syntactic expressions (Section 4). This extension is required in order to have
a su�ciently precise analysis; at the same time it shows that complex analy-
ses are within reach of certi�cation and hence can be used for foundational,
abstract interpretation-based PCC.

2 A PCC architecture with certi�ed proof checkers

In the following, we propose an extensible PCC architecture based on abstract
interpretation which allows to download dedicated, certi�ed proof-checkers
safely. The architecture, summarised in Figure 1, is bootstrapped by the code
consumer with a general purpose proof checker, here Coq [9]. The certi�cation
of a program is done using a two-step protocol between the code producer
and the code consumer. In the �rst step, the producer queries the consumer
in order to know whether it possesses the relevant proof-checker. If not, the
producer sends the checker together with its soundness proof. This sound-
ness proof is then veri�ed automatically by a general-purpose proof checker
(here, the Coq type checker) and if veri�cation succeeds, the now certi�ed
checker is installed. In this way, the architecture combines the advantages of
both a trustworthy general-purpose proof checker and �exible specialised proof
checkers. Once the proof checker has been installed, the consumer is ready to
download the program of the code producer. As it is customary in PCC, the
code producer sends the program packaged with a certi�cate to be checked
by the previously downloaded proof checker. This certi�cate can be obtained
using optimised, un-trusted �xpoint solvers and compressors since it will be
checked upon reception.

We use the program extraction mechanism of Coq to extract e�cient Caml
checkers from their Coq speci�cation. Extraction is using the proofs-as-programs
paradigm to erase those parts of a proof term that only concerns the proof of
properties and which do not contribute to the speci�ed computation. A for-
mal account of Coq current extraction can be found in Letouzey's thesis [17].
It would, in principle, have been possible to execute the Coq speci�cation di-
rectly since the Coq proof-checker implements strong normalisation of lambda
terms. However, this mechanism is at the moment not e�cient enough to make
such an approach viable (recent progress in the implementation of strong re-
duction [13] may change this in the future).

The producer and consumer have to formalise what it means for a program to
be safe. This is done by providing a Coq speci�cation of the semantics (here,
a small-step operational semantics) of the program together with a semantic
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Fig. 1. PCC architecture

de�nition of the security policy. We restrict our attention to safety properties
that must hold for all reachable execution states. More precisely, the Coq
speci�cation provides:

• the type of programs Pgm,
• a semantic domain State,
• a set of initial semantic states : S0 ⊆ State
• for each program, an operational semantics →p⊆ State × State,
• for each program, a set Safep of states that respect the security policy.

As usual, we write →∗
p for the re�exive transitive closure of the transition

relation of the program p. The collecting semantics of a program p is de�ned
as the set of all reachable states by →p, starting from an element of S0.

JpK =
{

s ∈ State | ∃s0 ∈ S0, s0 →∗
p s

}

De�nition 2.1 A program p is safe if JpK ⊆ Safep, i.e., if all its reachable
states are safe.

Together with the Coq proof-checker and extraction mechanism, the speci�ca-
tion of the semantics and safety property form the Trusted Computing Base
(TCB) of the PCC architecture. In Figure 1, these trusted components are
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located in the upper-right corner of the consumer side. Other components of
the consumer are not part of the TCB:

• Downloaded checkers (upper left corner) are only trusted if they type-check;
• Extracted checkers inherit trust from type-checked checkers.

Program extraction excluded, the TCB of Figure 1 is exactly the TCB of
Foundational PCC � a proof-checker and a formal speci�cation of the program
semantics and safety property. Program extraction is the price we pay for an
e�cient checker. This has the side-e�ect that the Caml compiler must also be
counted among the trusted components. In theory, moving the Caml compiler
outside the TCB can be done by providing a Coq correctness proof of it. The
recent correctness proof of a C compiler back-end [16] shows the feasibility of
this approach.

Given a program p, the code producer has to provide a machine-checkable
proof that p is safe. These proofs can be tedious and time-consuming to pro-
duce by hand. In this paper, we show how to use abstract interpretation to
construct program certi�cates in a fully automatic way. In this approach,
programs are automatically annotated with program properties (elements of
abstract domains) together with a reconstruction strategy (to be described in
detail in Section 5). A reconstruction strategy consists of a series of steps that
allow to verify that the program properties form a program invariant that
implies the security policy.

The certi�ed checkers implement the signature expressed by the Coq module
Checker in Figure 2. This module �rst contains a de�nition of the format of
certi�cates. The function checker takes two arguments: a program P and a
candidate certi�cate cert generated by an untrusted external prover. If the
checker function returns true, the companion theorem checker_ok ensures
that the program is safe, as de�ned in De�nition 2.1. Thus, the successful type
checking of a module against the signature Checker proves that the checker
is correct.

Module Type Checker.
Parameter certificate:Set.
Parameter checker : program → certificate → bool.
Parameter checker_ok : ∀ P cert,
checker P cert = true → JPK ⊆(Safe P).

End Checker.

Fig. 2. Interface for certi�ed proof checkers

In this paper we propose a generic method to construct such a certi�ed checker
from a certi�ed static analysis. Section 3 presents the notion of certi�ed static
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analysis. Sections 5�6 describe how certi�cate checkers can be built from certi-
�ed static analyses. We �rst present an unoptimised checker and then develop
techniques for �xpoint compression that allow to obtain compact program cer-
ti�cates. In Section 7 we then describe the implementation of a Coq functor
IAChecker which constructs a module of type Checker from any certi�ed
analysis.

3 A Coq signature of certi�ed static analyses

The notion of certi�ed analysis is based on previous work on programming
a static analyser in Coq [7,24]. We recall the main components of such a
formalisation and explain how they are used for proof-carrying code.

3.1 Certi�ed abstract interpretation for PCC

A certi�ed analysis is a Coq function analyse ∈ Pgm → bool which for a given
program p either proves the safety of p (and returns true) or fails:

∀p ∈ Pgm, analyse(p) = true ⇒ JpK ⊆ Safep

The analyser and its Coq correctness proof are built in four main steps. We
stress that the following domains, functions and relations are all Coq objects
that for presentational purposes are written using ordinary mathematical no-
tation.

(1) An abstract domain
(
State],v],t],u]

)
with a lattice structure is intro-

duced, v] modelling the relative precision of elements in State]. In the
concrete world, property precision is modelled with the partial order ⊆.
The concrete and abstract worlds are linked by a concretisation function

γ :
(
State],v],t],u],

)
→ (P(State),⊆,∪,∩) (1)

An abstract object s] ∈ State] is said to be a correct approximation of a
concrete state s ∈ State if and only if s ∈ γ(s]) 1 .

(2) An abstract semantics is then speci�ed as any post-�xpoint of a well-
chosen abstract function F ]

p ∈ State] → State]. The correctness of this

1 Because we only focus on soundness of the abstract interpreters, the classic notion
of Galois connection [11] is not mandatory here. Instead we require γ to be a meet

morphism, i.e. γ(s]
1 u] s]

2) = γ(s]
1) ∩ γ(s]

2). This is equivalent to the existence of
the corresponding Galois connection when

(
State],v],t],u],

)
is complete and u]

denotes the general greatest lower bound (on sets instead of two values).
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speci�cation must be proved by establishing that all post-�xpoint are
correct approximations of the concrete semantics.

∀p ∈ Pgm, ∀s] ∈ State], F ]
p(s

]) v] s] ⇒ JpK ⊆ γ(s]) (2)

(3) A post-�xpoint solver solve ∈ Pgm → State] is then de�ned, based on
�xpoint iteration techniques.

∀p ∈ Pgm, F ]
p(solve(p)) v] solve(p) (3)

(4) An abstract safety test Safe]
p ∈ State] → bool is de�ned in the abstract

world.

∀p ∈ Pgm,∀s] ∈ State], Safe]
p(s

]) = true ⇒ γ(s]) ⊆ Safep (4)

Together, these proofs assert that Safe] ◦ solve is a correct analyser.

Step (3) constructs a post-�xpoint that serves as certi�cate for showing that
the program is safe. However, for our PCC context it is important to observe
that it is only the existence of such a post-�xpoint that matters for proving
safety. Formally, by combining (2) and (4) we have:

Observation 3.1

∀p ∈ Pgm, (∃s] ∈ State], F ]
p(s

]) v] s] ∧ Safe]
p(s

]) = true) ⇒ JpK ⊆ Safep

In particular, this means that for a proposed certi�cate s] ∈ State], our PCC
checker only has to test F ]

p(s
]) v] s] ∧ Safe]

p(s
]) = true.

3.2 Certi�ed analysis for memory invariants

We now present the Coq de�nition of certi�ed analyses for languages where
the semantic domain is expressed as a set of reachable states, composed of
a control point and a memory State = Ctrl × Mem. The abstract domain
State] = Ctrl → Mem] attaches memory invariants to each control point of a
program. We will later show how to compress such abstract states into more
compact program certi�cates that only provide invariants at certain, well-
chosen control points. The certi�ed analysis interface is presented in Figure 3.

The �rst element of this signature is the lattice structure AbMem which is the
Coq counterpart of Mem]. The Coq lattice signature provides the standard
de�nition of lattices (partial order, least upper bound, greatest lower bound
with their properties). The carrier of the lattice is represented by AbMem.t and
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Module Type CertifiedAnalysis.
Declare Module AbMem : Lattice.

Definition AbState := Ctrl → AbMem.t.

Record Constraint : Set := {
target: Ctrl;
expr: list AbMem.t → AbMem.t;
sources: list Ctrl }

Definition Verif_cstr (C:Constraint) (st : AbState) :=
AbMem.order (expr C (map st (sources C))) (st (target C)).

Parameter gen_cstr: program → list Cstr.

Definition Approx (P:program) (St : AbState) :=
∀ c, c ∈ (gen_cstr P) → Verif_cstr c St.

Parameter genAbSafe: program → list(Ctrl*(AbMem.t → bool)).

Definition Secure (P:program) (St : AbState) :=
∀ p check, (p,check) ∈ (gen_AbSafe P) →

check (St p) = true.

Parameter analysis_correct : ∀ P st,
Approx P st → Secure P st → JPK ⊆(Safe P).

End CertifiedAnalysis.

Fig. 3. The Coq signature of a certi�ed static analysis

the partial order by AbMem.order. A number of lattice operations exist for
designing new abstract domains. As part of our certi�ed static analysis project,
we have developed a lattice library in Coq, containing base lattices (�nite sets,
intervals, . . . ) and domain constructors (sum, product, function) that permit
to construct new abstract domains by composing these basic blocks [24]. Most
of the proofs follow standard lattice theory.

The abstract function F ]
p previously presented now operates on the domain(

Ctrl → Mem]
)
→

(
Ctrl → Mem]

)
. Because the number of control points

of a program is �nite, say n, post-�xpoints of F ]
p can be represented as n-

tuples (s]
1, . . . , s

]
n) ∈

(
Mem]

)n
solutions to systems of constraints where a

given constraint has the general form
(
f(s]

cp1
, . . . , s]

cpk
) v s]

cp

)
. In the Coq

signature, the abstract function F ]
p is modelled by a list of such constraints

generated by the function gen_cstr. A constraint
(
f(s]

cp1
, . . . , s]

cpk
) v s]

cp

)
is

represented by a record Constraint with three �elds: target contains the
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control point cp targeted by the constraint; expr computes the right-hand side
of the constraint and sources contains the list of control points which appear
in the de�nition of f . The predicate Verif_cstr de�nes what it means for
an abstract state to satisfy a constraint. Finally, the predicate Approx holds
when an abstract state veri�es all the constraints generated from the program.

Because abstract states in State] are of the form Ctrl → Mem], we can split
the abstract safety test Safe]

p into several local tests of the form

(cp, check) ∈ Ctrl × (Mem] → bool).

Each test is attached to a speci�c control point cp and ensures that no error
state can be reached by a one-step transition out of the state at control point
cp. For example, a safety test of array bounds checks would check the value
of the index before each array access instruction of a program. The check
generation is realised by a function genAbSafe which returns, for a given
program, a list of local tests.

The last element of the signature is a proof analysis_correct that states
the global correctness of the constraint generator gen_cstr and the abstract
test generator gen_AbSafe. It is a direct specialisation of Observation 3.1 to
our speci�c abstract domain of states. If an abstract state s] veri�es all the
constraints generated by gen_constr (i.e. is a post-�xpoint of F ]

p) and ful�lls

all safety checks generated by gen_AbSafe (i.e. Safe]
p(s

]) = true), then the
program is safe.

4 Enhanced interval analysis for byte codes

To demonstrate the working of our PCC framework and to test its feasibil-
ity we have developed an interval analysis for a simple byte code language.
The analysis is based on existing interval analyses for high-level structured
languages [10] but has been extended with an abstract domain of syntactic
expressions to obtain a similar precision at byte code level.

4.1 Syntax and semantics

The byte code instruction set contains operators for stack and local variable
manipulations and for integer arithmetic. Instructions on arrays permit to
create, obtain the size of, access and update arrays. The �ow of control can
be modi�ed unconditionally (with Goto) and conditionally with the family
of instructions If_icmpcond which compare the top elements of the run-time
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stack and branch according to the outcome. Finally, there are instructions for
inputting and returning values. This language is su�ciently general to illus-
trate the novelties of our approach and perform experiments on code obtained
from compilation of Java source code. An extension to the object-oriented
layer would follow the lines of the certi�ed analysis for object-oriented (Java
Card) byte code already developed by Cachera et al. [7].

pgm ::= (pc instr pc)∗

instr ::= Nop | Ipush i | Pop | Dup | Ineg | Iadd | Isub | Imult

| Load x | Store x | Iinc x n

| Newarray | Arraylength | Iaload | Iastore

| Goto pc | If_icmpcond pc cond ∈{eq,ne,lt,le,gt,ge}

| Iinput | Ireturn | Return

The byte code language is given an operational semantics which program
states have the form <cp, h, s, l> where cp is a control point to be executed
next, h is a heap for storing allocated arrays, s is an operand stack, and l is an
environment mapping local variables to values. An array is modelled by a pair
consisting of the size of the array and a function that for a given index returns
the value stored at that index. A special error state Error is used to model
execution errors which here arise from indexing an array outside its bounds.

Val = Z + Location

Stack = Val∗

LocVar = Var → Val

Array = (length : Z)× ([0, length−1] → Val)

Heap = Location → Array⊥

State = (Ctrl × Heap × Stack × LocVar) + Error

The operational semantics is de�ned via a transition relation→ between states
in a standard fashion and will not be explained in detail. Representative rules
of the de�nition of → are shown in Figure 4. They illustrate di�erent aspects
of the byte code language; in particular how array bound checks are performed
when accessing an array.

With the introduction of a speci�c error state, the set of safe states can simply
be de�ned as all states except the Error state.

Safep = {s | s 6= Error}
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.

instrAtP(p1, Ipush n, p2)

<p1, h, s, l> →P <p2, h, n :: s, l>

instrAtP(p1,Load x, p2) l(x) = n

<p1, h, s, l> →P <p2, h, n :: s, l>

instrAtP(p1, If_icmplt p, p2) n1 < n2

<p1, h, n2 :: n1 :: s, l> →P <p, h, s, l>

instrAtP(p1, Iaload , p2) h(ref ) = a 0 ≤ i < a.length

<p1, h, i :: ref ) :: s, l> →P <p2, h, a[i] :: s, l>

instrAtP(p1, Iaload , p2) h(ref ) = a ¬ 0 ≤ i < a.length

<p1, h, i) :: ref :: s, l> →P Error

Fig. 4. Operational semantics (selected rules)

4.2 Interval analysis

Interval analysis uses the set Intvl of intervals over Z = Z ∪ {−∞, +∞}
to approximate integer values. The other kind of values are the references
to arrays. We abstract arrays by their size which is also represented by an
interval. The abstract domains for the analysis are de�ned as follows:

Intvl =
{

[a, b] | a ∈ Z, b ∈ Z, a = −∞∨ a ≤ b ∨ b = +∞
}

Num] = Array ] = Intvl⊥

Val ] =
(
Num] + Array ]

)>
⊥

Stack ] = (Exp∗)>⊥

LocVar ] = Var → Val ]

State] = Ctrl →
(
Stack ] × LocVar ]

)

The domain of syntactic expression Exp[Val ]] is inductively de�ned by the
following rules:

n ∈ Z
const n ∈ Exp[Val ]]

x ∈ Var
var x ∈ Exp[Val ]]

v ∈ Val ]

absval v] ∈ Exp[Val ]]

e ∈ Exp[Val ]]
−e ∈ Exp[Val ]]

e1 ∈ Exp[Val ]], e2 ∈ Exp[Val ]], op ∈ {+,−, ∗}
binop op e1 e2 ∈ Exp[Val ]]
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For each abstract domain de�ned above we build the corresponding Coq lattice
structure by simply combining lattice functors. We use here the lattice library
proposed in [24].

The novelty of this analysis is the use of an abstract domain Exp[Val ]] of
syntactic expressions over the base abstract domain Val ] of abstract values.
An example of such an abstract element is binop + (var j) (const 42) which
when evaluated will result in the interval obtained by applying interval arith-
metic to the interval associated with local variable j and the constant 42. The
order imposed on Exp[Val ]] is the order of the underlying lattice extended
to expressions by stipulating that two expressions are in the order relation if
they have the same term structure and if abstract values at all corresponding
places in the term are related. The exact de�nition can be found in [6].

instrAtP(p1, Ipush n, p2) m]
p1

= (s]
p1

, l]p1
)

m]
p2 w

(
(const n) :: s]

p1 , l
]
p1

)
instrAtP(p1, If_icmplt p, p2) m]

p1
= (e2 :: e1 :: s]

p1
, l]p1

)

m]
p w

(
s]

p1 , Je1 < e2K]
test(l

]
p1)

)
instrAtP(p1, If_icmplt p, p2) m]

p1
= (e2 :: e1 :: s]

p1
, l]p1

)

m]
p2 w

(
s]

p1 , Je1 ≥ e2K]
test(l

]
p1)

)
Fig. 5. Constraint generation rules (examples)

Several constraint generation rules are presented in Figure 5 (see Appendix A
for the comprehensive set of constraints). Among these, constraints which
model test-and-jump instructions are of particular interest because they make
use of the notion of backward abstract interpretation of expressions [10]. It al-
lows to restrict the destination state of the jump according to the information
obtained by the test. When a guard of the form e1 c e2 is veri�ed (with c a com-
parison operator and e1 and e2 some expression), the current abstract environ-
ment l] is re�ned by Je1 c e2Ktest(l]). The operator J·K]

test ∈ LocVar ] → LocVar ]

over-approximates the set of environments (l, h) which ful�ll the guard e1 c e2.

Using the abstract domain Exp[Val ]] of syntactic expressions over lattice Val ]

has a signi�cant impact on the precision of the analysis (and hence on the
certi�cates that can be generated) because it allows to preserve information
obtained through the evaluation of conditional expressions. At source level,
a test such as j+i>3 provides information about the possible values of i
and j that can be exploited in the branches of a conditional statement. At
byte code level, this link between variables i and j is lost (even when these
corresponds to local variables in the byte code) because these values have to
be pushed onto the stack before they can be compared. Using syntactic ex-
pressions to abstract stack content enables the analysis to keep information
such as that a value is the sum of two variables. Figure 6 provides an ex-
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ample of the precision so obtained. The �gure contains a Java code snippet
and its compiled version in byte code, annotated with an interval certi�cate.
Before executing the instruction 11 : if_icmple 16, the stack contains the
abstract elements (binop + (var j) (var i)) and (const 3). Since i is the
singleton interval [100,100] the analysis can deduce that at the following
instruction, j is necessarily bigger than or equal to -96.

Source example

int i = 100;
int j = Input.read_int();
if (j+i>3) { .. }

Analysed byte code version

...
// [j 7→[-oo,+oo] ; i 7→[100,100]]
// <>

7 : iload j
// [j 7→[-oo,+oo] ; i 7→[100,100]]
// <(varj)>

8 : iload i
// [j 7→[-oo,+oo] ; i 7→[100,100]]
// <(var j)::(var i)>

9 : iadd
// [j 7→[-oo,+oo] ; i 7→[100,100]]
// <(binop + (var j) (var i))>

10 : ipush 3
// [j 7→[-oo,+oo] ; i 7→[100,100]]
// <(binop + (var j) (var i))::(const 3)>

11 : if_icmple 16
// [j 7→[-96,+oo] ; i 7→[100,100]]
// <>

...

Fig. 6. Analysis example

Figure 7 presents an example of an abstract safety test for the interval anal-
ysis. Such a test is done at each control point where an instruction Iaload
is found. We verify that the abstract operand stack has at least 2 elements.
The �rst in an interval abstracting the index where an array element must be
found and the second the interval approximating the length of the array. We
check that index is positive and smaller than the length of the array. Here,
JeK]

expr(l
]) denotes the interval resulting from the evaluation of expression e in

the abstract environments l].
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CheckIaload (s], l]) =

match s] with

| (ei :: elength :: q) →

let [i1, i2] = JeiK]
expr(l

]) and [l1, l2] = JelengthK]
expr(l

]) in

0 ≤ i1 & i2 < l1

| _→ false

Fig. 7. Safety test for Iaload instructions

5 Certi�cate checkers

The checker component of the PCC architecture is the critical part that has to
be provably sound as well as space- and time-e�cient. In the following, we de-
scribe how to generate checkers and certi�cates that ful�l these requirements.
The certi�cates attach a piece of information to a subset of the control points.
Each such piece of information can be checked by evaluating the constraint
associated with the corresponding control point. Hence, certi�cate size and
certi�cate checking are linear in the size of the program.

The method for constructing certi�cate checkers is generic and applies to any
certi�ed analysis. It is expressed as a functor

Module type AIChecker (CertifiedAnalysis) : Checker

which takes as argument a CertifiedAnalysis (the interface of which was
de�ned in Figure 3) and returns a Checker (cf. Figure 2). Central to the
construction of such a functor is Observation 3.1 which establishes the link
between the checker and the certi�ed analysis and which provides a property
that has to be proved for any new proof checker. This property de�nes the
notion of a �xpoint checker:

De�nition 5.1 (Fixpoint checker) Given a program P and a certi�cate
cert, a �xpoint checker is a function

checker : Pgm → Certificate → bool

satisfying that if checker(P, cert) = true, then there exists an abstract state s]

which at the same time

• approximates the program semantics (F ]
P (s]) v] s]) and

• respects the safety policy (Safe]
P (s]) = true)

Observation 3.1, when combined with the property analysis_correct from
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the signature CertifiedAnalysis, yields that success of a �xpoint checker
(checker(P, cert) = true) implies program safety. This proves the checker_ok
theorem of the Checker interface�see Theorem 5.6.

The simplest certi�cate to check is just an abstract state s]. The algorithm
of the checker for such certi�cates is simple: check that all the generated
veri�cation conditions are satis�ed by the proposed s]. Such a naive checker
can be written as

Let checker p s] =

List.for_all (verif_cstr s]) (gen_cstr p) &&

List.for_all (verif_AbSafe s]) (gen_AbSafe p)

This checker is directly executable because we have provided constructive
de�nitions of the abstract domain operations throughout the speci�cation. The
algorithm trivially satis�es the De�nition 5.1: if the checker returns true
then the certi�cate s] veri�es all the veri�cation conditions (those imposed
by the analysis itself and those imposed by the safety policy). In terms of
complexity, this naive algorithm ful�ls the requirement of having a runtime
complexity that is linear in the program size. For each instruction, it checks
the constraints imposed by the analysis and the safety requirements. Verifying
such a constraint amounts to computing an abstract transfer function and
an ordering test v]. The size of the certi�cate is also linear in the program
size�each program point stores an element of the abstract domain. This can,
however, be improved. In the following we explain how to design checkers that
require signi�cantly smaller certi�cates.

5.1 Strategies for reconstructing certi�cates

The naive algorithm requires certi�cates that provide a complete solution of
the analysis: an abstract memory state is attached to each control point. We
now describe a proof checker which (implicitly) recomputes the complete so-
lution from a sparse certi�cate. The core of this checker is a reconstruction
algorithm which takes as input a program and a strategy that is interpreted
step by step. Upon success, it returns a tagged abstract state from which one
can extract (after tag erasure) a correct and safe abstract state.

reconstruct : Pgm → Strategy → option(Ctrl → TagMem)

The datatypes for strategy commands and tagged memories are given below:

Inductive TagMem : Set :=
| Undef
| Hint (mem:AbMem.t)
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| Checked (mem:AbMem.t).

Inductive command : Set :=
| Assign (cp:Ctrl) (m:AbMem.t)
| Eval (cp:Ctrl).

Definition Strategy := list command.

Tags are used to keep track of the reconstruction status of a control point and
carry the following intuitive meaning. For a control point cp:

• Undef means that the abstract memory attached to cp has not been recon-
structed yet;

• Hint mem means that mem is proposed as an (untrusted) invariant for cp;
• Checked mem means that mem satis�es the constraint and the safety condi-
tion associated with cp.

The reconstruction algorithm is essentially an interpreter of strategies which
updates an abstract state s] and at the same time keeps track of the num-
ber chck of states that are tagged Checked. Reconstruction starts from an
unde�ned tagged abstract state (with chck = 0) and consumes a strategy com-
mand at a time. Each command updates the current tagged abstract state and
triggers local veri�cation conditions.

• The command Assign cp mem explicitly provides a (presumably) sound
abstract memory mem for the control point cp. If this control point is already
set (its tag is di�erent from Undef) then the reconstruction fails. Otherwise,
if mem veri�es the local safety policy at control point cp, the abstract state
is updated (s]:=s][cp→ Hint mem]).

• The command Eval cp computes the least abstract memory mem which
veri�es the constraints imposed by the analysis on control point cp. The
behaviour changes slightly depending on the tag already attached to cp.
· If it is Undef and mem veri�es the safety condition of control point cp,
then s]:=s][cp→ Checked mem] and chck is incremented;

· If it is Hint mem’ and mem v mem’, then s]:=s][cp → Checked mem’]
and chck is incremented.

· If it is Checked mem’ then the reconstruction fails.
• If there are no more commands and the number chck of checked states
equals the number of control points in s], then reconstruction succeeds and
returns Some s]. Otherwise it fails.

Correctness of the reconstruction algorithm amounts to proving that if the
reconstruction succeeds, it outputs a tagged abstract state that is a correct
approximation of the program and for which all control points satisfy the
safety policy. To argue the correctness of the reconstruction, we introduce
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the notion of partial correctness of the tagged abstract states at intermediate
stages of the computation.

De�nition 5.2 A tagged abstract state s] is partially correct if every control
point cp is tagged as follows:

• If a control point is tagged Checked mem then
· mem veri�es the local checks on cp imposed by the safety policy;
· mem veri�es the constraints on cp imposed by the analysis

• If a program point is tagged Hint mem then mem only veri�es the local checks
on cp imposed by the safety policy;

The soundness proof of the reconstruction algorithm is divided into two parts.
Lemma 5.3 states that the reconstruction algorithm only returns partially
correct tagged abstract states.

Lemma 5.3 (Correct Reconstruction) Given program P and strategy strat,
if reconstruct(P, strat) = Some s] then s] is partially correct

It can be proved (and this has been done in Coq) that each command updates
the tagged abstract state such that the invariant is preserved. The result then
follows by induction on the strategy length.

Lemma 5.3 does not ensure that the reconstruction is complete: for example,
the totally unde�ned abstract state is partially correct. However, the counter
of checked state and the �nal check on this counter makes it straightforward
to prove the following Lemma 5.4 which ensures that, at the end of the recon-
struction, all control points have a Checked tag attached.

Lemma 5.4 (Complete Reconstruction) Given program P and strategy
strat. If reconstruct(P, strat) = Some s] then

∀(cp ∈ P ),∃mem, s](cp) = Checked(mem)

5.2 Optimisation of the reconstruction algorithm

The strategies presented so far explicitly yield a witness s] that satis�es the
veri�cation conditions of the analysis. However, according to Observation 3.1
it su�ces for the checker to ensure the existence of such a witness�there is no
need to reconstruct it. This observation leads to an optimised reconstruction
algorithm which exploits this weaker requirement to drop on the �y abstract
memories that are no longer needed by the veri�cation process. This reduces
the memory usage of the reconstruction algorithm by keeping the size of the
tagged abstract state as small as possible.
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The strategy language is enriched with a Drop cp command and the set of
memory tags is extended with a Done value. A program point can be marked
Done when it has been checked (i.e, its tag is Checked mem ) and the com-
puted value is no longer needed to evaluate other constraints. In this case,
the e�ect of the Drop cp is to set a Done tag. As a side e�ect, the abstract
memory mem may be garbage-collected. Lemma 5.5 formalises the correctness
of strategies with Drop commands. It says that if a strategy with Drop com-
mands succeeds then the same strategy with all Drop commands removed will
also succeed. Since success of Drop-free strategies implies safety, this su�ces
to ensure the existence of the desired witness.

Lemma 5.5 (Implicit Reconstruction) For any strategy strat, if the re-
construction succeeds, a reconstruction using the same strategy without Drop
also succeeds.

The proof relies on the fact that Done tags can only be obtained from Checked

tags. As a result, if the implicit reconstruction drops a control point, there ex-
ists a Checked tag that would be computed by a strategy that replaces a Drop
by a no-op. By combining this intermediate result with the partial correctness
(Lemma 5.3) and completeness (Lemma 5.4) of the explicit reconstruction
algorithm, we can conclude the existence of an abstract state that correctly
approximates the program and which respects the safety policy. Thus, the
optimised proof checker is a �xpoint checker (cf. De�nition 5.1).

Theorem 5.6 (Checker) De�ne

checker(P, strat) ≡ (reconstruct(P, strat) 6= None).

For all programs P and strategies strat,

if checker(P, strat) = true then ∃s], F ]
P (s]) v] s] and Safe]

P (s]) = true

6 Generating Certi�cates

The generation of strategies (a code producer task) is not safety-critical for
the PCC infrastructure. However, for our PCC scheme to be feasible, e�cient
strategies are necessary. In this section we �rst show that for any given �x-
point a strategy can be generated, and then show how these strategies can be
optimised. We introduce the notion of winning strategies which are strategies
that verify certain well-formedness conditions with respect to the dependen-
cies between control points. These dependencies informally express that the
abstract memory at one control point is needed for the computation of the
abstract memory at another control point, and are de�ned formally as follows.
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De�nition 6.1 Let P be a program. The dependencies of a control point cp
are all the control points that appear in the rhs of a constraint with target p.

Depends(cp) = {cp ′ | ∃c ∈ gen_cstr(P ), c.target = cp ∧ cp ′ ∈ c.sources}

De�nition 6.2 Let P be a program and s] be an abstract state that is a
correct abstraction of P (F ]

P (s]) v] s]) and which respects the safety policy
(Safe]

P (s]) = true). A winning strategy is such that for each control point cp

(1) there exists one and only one Eval(cp);
(2) there exists at most one Assign(cp, s](cp));
(3) an Assign(cp, s](cp)) never occurs after an Eval(cp);
(4) there exists at most one Drop(cp);
(5) for all cp′ ∈ Depends(cp), we have that

(a) Eval(cp) occurs after Eval(cp′) or Assign(cp′, s](cp′));
(b) Drop(cp′) never occurs before Eval(cp′);
(c) Drop(cp′) never occurs before Eval(cp);

The essential property of winning strategies is their existence:

Lemma 6.3 Forall program P and abstract state s] such that F ]
P (s]) v] s]

and Safe]
P (s]) = true, there exists a winning strategy strat such that

checker(P, strat) = true.

Proof: Consider the strategy made of Assign commands followed by Eval
commands.

Assign(p1, s
](p1)); . . . ;Assign(pn, s

](pn));Eval(p1); . . . ;Eval(pn)

Conditions 1,2,3 and 5a of De�nition 6.2 are trivially ful�lled because the con-
trol points are assigned and evaluated once and all the assignments are made
before the evaluations begin. Finally, conditions 4, 5b and 5c are vacuously
true because there are no Drop commands.

This naive strategy gives rise to the naive checker described in Section 5. It
requires a whole s] and evaluates all the control points. As such, it is not
a very interesting strategy. Nonetheless, its existence allows us to state the
relative completeness of our checkers.

Theorem 6.4 Given program P and abstract state s] such that F ]
P (s]) v] s]

and Safe]
p(s

]) = true, there exists a certi�cate cert which ascertains Safe(P ).
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Proof: Take as certi�cate a winning strategy which by Lemma 6.3 always
exists. On such a winning strategy, the checker succeeds. The correctness of
the checker now implies that the theorem holds.

The generation of winning strategies can be done using the following scheme.
Choose an order on the control points and generate Eval commands for each
variable in that order, issuing Assign commands when evaluation requires
the value of a variable that has not yet been visited. Drop commands can be
inserted as soon as a variable is no longer needed to evaluate those variables
that have not yet been visited. By choosing di�erent orderings, di�erent kinds
of strategies will be generated. For example, �xing to evaluate control points
in increasing order leads to the lightweight byte code veri�er of Rose [25]. In
this kind of strategies, the Eval commands are implicit and only need to be
pre�xed by Assign commands for each back-edge in the dependency graph.
This leads to very compact strategies at the expense of being sub-optimal in
memory usage. We return to this point in Section 9 on related work.

More memory-e�cient strategies can be obtained by taking into account the
speci�c topological properties of the control-�ow graph (see De�nition 6.1).
We here list optimisations for some standard intermediate code structures:

Sequential graphs. A sequential graph is a graph for which a control point
has only a single predecessor and a single successor. Such graphs are obtained
from the analysis of basic blocks. They allow a straightforward strategy which
works in constant memory and alternates a Eval command and a Drop com-
mand of the predecessor control point.

Assign(p0, m0);Eval(p1);Drop(p0) . . .Eval(pn);Drop(pn−1)

Such a strategy can be coded e�ciently by intervals of program counters.

Loop free graphs. For a directed acyclic graph (DAG), a topological traversal
of the graph is a winning strategy that does not require a single Assign

command. It is possible to further optimise this strategy by picking a traversal
that allows to insert Drop commands as early as possible. This improves the
memory usage of the checker.

Reducible graphs. Reducible graphs are obtained from structured program-
ming languages. As such, our byte code may not structured but any code
generated from structured ones will be. For those graphs, an e�cient strat-
egy consists in placing Assign commands at loop-headers. Given these loop-
headers, the rest of the graph can be decomposed into DAGs for which the
DAG strategy applies.
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7 Implementation

We use the program extraction mechanism of Coq to speed up the computa-
tions both on the producer and the consumer side. The extraction mechanism
in Coq produces Caml programs from Coq terms by eliding those parts of the
terms that do not have computational content. Such parts are only necessary
to ensure the well typing of the Coq term (and thereby the correctness of the
corresponding programs) but are not required for executing the programs.

Strictly speaking, nothing needs to be certi�ed in Coq on the producer side,
but parts of the extracted checker can nonetheless be reused. In order to obtain
a working analyser, the code extracted from a CertifiedAnalysis structure
must be combined with a �xpoint iterator for solving the constraint systems.
Such an iterator is a reusable component independent of the speci�c analysis.
If the extracted code does not scale well, subparts of the abstract domains
can be substituted for hand-coded operators in a modular way. This might
be relevant for numeric-intensive computations for which purely functional
implementations cannot compete with the arithmetics of the processor. These
optimisations are local to the producer and serve to speed up the computation
of a certi�cate. They may be unsafe but can at worse lead to certi�cates that
will not be accepted by a certi�ed checker.

On the consumer size, the speci�cation of the certi�cate checker is a module
of type Checker (presented in Section 2). Because the �xpoint reconstruction
algorithm is analysis independent, certi�cate checkers can be constructed in a
generic fashion from any certi�ed static analysis. This is expressed as a functor

Module AIChecker (CA:CertifiedAnalysis) : Checker.
...
Definition certificate := list command.
Definition checker (p:program) (cert:certificate) : bool :=

reconstruct (CA.gen_cstr p) (CA.gen_AbSafe p) cert <> Fail.
...

End AIChecker.

which takes as argument a CertifiedAnalysis (cf. Figure 3) and returns a
Checker, the interface of which was de�ned in Figure 2.

The extracted Caml checker function must be applied to a program p and
a certi�cate cert. Some care must be exercised when deciding on the format
of p and cert. The Coq extraction of function is correct only if the extracted
function is evaluated on arguments that are well-typed in Coq (see Letouzey's
PhD thesis [17] for a formal statement) but the extracted Caml function will
have a more permissive type and will thus return a result on arguments which
the Coq version of the function would not accept. This means that, potentially,
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a malicious producer could propose a certi�cate that would be rejected by Coq
but accepted by the Caml type checker. The output of the extracted checker
on such a certi�cate is unspeci�ed by its Coq correctness statement and would
provide a security hole in the architecture.

To avoid this pitfall, we de�ne the Coq certi�cate type so that it is in bijection
with the corresponding extracted type. In our implementation we choose a
certi�cate format of form:

Definition certificate : Set := list bool.

Hence certi�cates are directly manipulated as lists of bits. It is the responsi-
bility of the consumer to open and close the stream �le and convert it into a
correct list of bits. The producer must then not only propose a certi�ed checker
written in Coq but also a Coq parser to parse the bit-stream certi�cates. Pro-
gramming such a parser is not di�cult since no proof (except termination) is
needed. The main Caml �le of the consumer checker then has the structure

let _ =
let file = Sys.argv.(1) in
let p = Parser.parse_main (file^".class") in
let s = ReadBit.get_stream (file^".pcc") in

if Coq.BytecodeChecker.checker p s
then Printf.printf "program safe.\n"
else Printf.printf "bad certificate.\n"

This clearly exhibits the three components of the consumer checker:

• the byte code parser Parser.parse_main,
• the function ReadBit.get_stream to open, close and transform a channel
into a list of bit

• the extracted checker Coq.BytecodeChecker.checker

The functions Parser.parse_main and ReadBit.get_stream are part of
the trusted base whereas the function Coq.BytecodeChecker.checker, which
was de�ned above, is certi�ed by Theorem 5.6.

8 Experiments

We have tested our PCC framework by applying the improved interval analysis
described in Section 4 on a number of array-manipulating algorithms for gen-
erating certi�cates for a safety policy stating that the programs do not make
array accesses that are out of bounds. The test programs have been chosen
because they are all array manipulation-intensive and hence require precise
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certi�cates in order to show that they respect this safety policy. We have gen-
erated and checked certi�cates for three classical sorting algorithms (bubble
sort, heap sort and quick sort), the Floyd-Warshall algorithm for shortest past
computation, and algorithms for polynomial product and vector convolution.
For each algorithm, the enhanced interval analysis described in Section 4 is
su�ciently precise to be able to verify that all array accesses are safe.

Figure 8 and 9 presents some measurements pertinent to the certi�cation. Mea-
sures about the e�ciency of the certi�cate veri�cation are given Figure 8. The
last column shows the ratio between the number of constraints that an anal-
yser had to evaluate to construct the certi�cate and the number of constraints
that the checker had to evaluate. It should be stressed that the analyser used
to construct the certi�cates uses e�cient iteration algorithms based on widen-
ing and narrowing operators to accelerate convergence. Figure 9 shows size of
various elements: source and byte code programs, full and compress �xpoints,
and at last binary certi�cates. Compress certi�cates contain only one abstract
memories for each back-edge in the dependency graph. The binary certi�cates
are obtained from the compress �xpoints by an ad-hoc binary encoding. Such
binary �les are then decoded into strategy which follow the increasing order
on program points. Note that this encoding/decoding phase is not part of the
trusted base.

Program checking time (sec.) analyser/checker nb of constr.

BubbleSort 0.015 440/110

HeapSort 0.050 8001/381

QuickSort 0.060 8910/405

Convolution 0.010 460/92

FloydWarshall 0.020 23114/163

PolynomProduct 0.010 150669/133

Fig. 8. E�ciency experiments on various algorithms

Two things are worth noting here. First, the size of the certi�cates is much
(sometimes an order of magnitude) smaller than the code it certi�es. Second,
the ratio between the number of evaluations of constraints used by the anal-
yser by far exceeds the number of evaluations used by the checker to verify
the certi�cate�sometimes by several orders of magnitude. The six programs
are moderate in size but are su�ciently complex to show that the PCC in-
frastructure can be used to generate compact, non-trivial program certi�cates
which can be checked more e�ciently than they can be produced.
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Program .java .class complete compressed binary
�xpoint �xpoint certi�cate

BubbleSort 440 528 3640 182 44

HeapSort 1044 858 17352 332 63

QuickSort 1078 965 25288 629 158

Convolution 378 542 2942 195 52

FloydWarshall 417 596 7180 346 134

PolynomProduct 509 604 5366 308 87

Fig. 9. Experiments on various algorithms: size in bytes

9 Related Work

The VeryPCC project conducted by Nipkow et al. aims at providing a foun-
dational PCC framework veri�ed within the Isabelle/HOL theorem prover.
Their PCC infrastructure [28] is based on a dedicated safety logic that is used
to express local program properties and the overall safety policy. The core of
the framework is a generic VCGen that generates veri�cation conditions in the
safety logic from the program's control �ow graph. The VCG is parameterised
on a weakest precondition transformer wpF that for a given instruction in the
program and a given post-condition in the safety logic �nds a weakest precon-
dition in the safety logic. This wpF transformer must be proved correct with
respect to the operational semantics of the particular programming language.
One di�erence with the work presented here is that the VCG works on pro-
grams annotated with loop invariants. These loop invariants can be provided
by an un-certi�ed data �ow analyser but they will then have to be re-proved
in Isabelle by the code producer in order to obtain a proof that can be com-
municated to the code consumer. This user interaction limits the scalability
of the approach as soon as the invariants cannot be proved by the Isabelle de-
cision procedures. Moreover, proof terms are Isabelle proof scripts that have
to be rerun. Because tactics can boil down to proof search, the e�ciency of
the proof checking is not clear. By using an abstract interpretation certi�ed
within Coq, the analyser directly produces a proof (namely, a post-�xpoint)
that can be communicated and understood by the proof checker.

The Mobile Resource Guarantee (MRG) project [5,4] has produced a fun-
damental PCC infrastructure for proving properties related to the resource
consumption of a code with explicit memory management. For example, they
want to establish that a given code can avoid dynamic memory allocation by
re-cycling memory that is no longer being used. Initially, the functional source
code is submitted to an advanced static analysis that will provide information
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about memory consumption. This information is then used to compile into an
imperative intermediate code. To reason about intermediate code annotated
with memory consumption information, they build an intermediate layer of
customised inference rules from a generic program logic. The soundness of
this logic is checked in Isabelle. Certi�cate checking is now reduced to check-
ing a proof in this dedicated logic. The MRG work shares with us the idea
of installing a dedicated proof checker that comes with its own correctness
proof which can be veri�ed with respect to an operational semantics. The ap-
proach does not propose a particular methodology for producing such proofs
but can use a variety of type inference mechanisms. In one instantiation of the
framework [19], the actual certi�cate checking in is done within Isabelle using
dedicated proof techniques. In contrast, we propose a particular methodology
based on certi�ed abstract interpretation. Our use of post-�xpoints and their
formalisation in constructive logic allowed to obtain a proof checker that is
both certi�able and e�cient.

The Open Veri�er Framework [8] is a proposal for strengthening the trust
in the infrastructure without sacri�cing e�ciency. It is more �exible and
more secure than standard PCC. The soundness depends on a core (trusted)
condition generator. For �exibility, condition generators can be installed dy-
namically to enrich the platform, without having to be trusted by the core.
The interaction is governed by the following protocol. The core is generating
strongest postconditions; custom components generate a weakening together
with a machine-checkable proof that it is correct. To ease the design of such
custom components, a scripting language provides a �exible way to describe
on-the-�y abstractions. On the other hand, a foundational custom component
would not have to argue its correctness at each inference step.

Albert, Hermenegildo and Puebla have proposed to use abstract interpretation
for automatically producing analysis-carrying code [1]. They develop a PCC
framework for constraint logic programs in which a CLP abstract interpreter
calculates a program invariant (a �xpoint) that is su�cient to imply a given
security policy. The �xpoint is sent to the code consumer who uses the abstract
interpreter to check in one iteration that the certi�cate is a �xpoint. Our work
improves over this approach in three ways. First, our FPCC approach provides
transmittable proofs of correctness of our analysers which means that they do
not have to be part of the trusted computing base�this is not dealt with in
[1]. Second, the certi�cates in [1] are complete �xpoints (the analysis answer
tables) which could be further compacted with our �xpoint compression al-
gorithm. Finally, their approach works for a high-level source code language
(CLP) whereas we have directly addressed the problem of analysing byte code.

For PCC, the size of proof terms has been a recurring problem. Several ap-
proaches have been proposed to tackle this problem. Necula and Lee [21]
enhance the LF type-checker with an e�cient reconstruction algorithm that
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allows a more compact representation of proofs. Works closer to ours are the
oracle-based checkers of Necula and Rahul [22] who, instead of transmitting
a proof term, sends as certi�cate an oracle (a stream of bits) that guides an
higher-order logic interpreter in his proof search. A variation of this idea has
been implemented in a foundational PCC framework by Wu, Appel and Stump
[29]. Unlike our approach based on certi�ed checkers, the logic interpreters are
part of the TCB. The type of certi�cates are otherwise rather di�erent but
it is interesting to observe that in both cases, it is possible to generate quite
small certi�cates.

Lightweight Bytecode Veri�cation for the KVM developed by Rose and Rose
[25,26] includes a compression scheme for stack maps (that correspond to our
certi�cates) based on converting a data �ow problem into a lightweight data
�ow problem. Compared to our algorithm, their stack map compression allows
to evaluate certi�cates on the �y as constraint generation proceeds. It has
the consequence that the strategy is pre-determined and �xed: the constraints
must be solved in the order they are generated. Unlike our garbage-collecting
checker, their strategy for Dropping values is hard-coded and may not be
optimal. Furthermore, backward control points cannot be dropped at all. For
the same reason, the number of Assign may not be optimal. Our algorithm
is more �exible and accommodates more e�cient strategies. It has also the
advantage that new strategies do not require a new correctness proof.

10 Conclusions and further work

We have developed a foundational PCC architecture based on certi�ed static
analysis. Compared to other PCC proposals, this approach allows to employ
static analyses as certi�cate generators in a seamless and automatic manner,
without having to re-prove proposed invariants inside a given theorem prover.
The strong semantic foundations of the theory of abstract interpretation and
its recent formalisation inside the Coq proof assistant enables the construction
of a certi�ed proof checker from the certi�ed static analyses. Such certi�ed
proof checkers can then be installed dynamically by a code consumer who can
check the validity of the checker by type checking it in Coq.

Instead of sending explicit representations of certi�cates with a mobile code,
we encode certi�cates as strategies that the code consumer executes in order to
reconstruct a suitable post-�xpoint that will imply the given security policy.
Such strategies are generated from certi�cates and can be further tuned to
minimise memory consumption of the checker. Indeed, proof checkers only
need to verify the existence of a suitable post-�xpoint, without having to re-
create it in its entirety. This is taken advantage of in the garbage-collecting
strategies that we have de�ned.
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The architecture has been implemented and tested with a certi�ed interval
analysis of array-manipulating byte code in order to generate certi�cates at-
testing that a given code will not attempt to access an array outside its bounds.
The interval analysis uses a novel kind of abstract domains in which syntac-
tic expressions are mixed with abstract values. This symbolic representation
allows to keep track of the expression used to compute a particular abstract
value�an information which is otherwise lost when compiling from high-level
languages to byte code. The syntactic expressions add just enough relational
information to the otherwise non-relational interval analysis to deal properly
with the propagation of the information obtained from conditional instruc-
tions. This analysis technique should be of interest to other analyses of low-
level code.

The whole Coq development, including a working checker, is available for
download at http://www.irisa.fr/lande/pichardie/PCC/.

Several issues remain open for further investigation.

• The theory of strategies for reconstruction �xpoints from Section 5 could be
developed further, notably with the aim of determining general conditions
for the existence of optimal strategies. Furthermore, the trade-o� between
the length of a strategy (and hence its execution time) and its memory
consumption should be elucidated.

• The class of security policies considered should be enlarged to include tem-
poral policies and policies related to the way the code consumes the re-
sources of the host machine. Here, we have chosen to deal with the array-
out-of-bounds policy, to make the presentation focused but the framework
can accommodate other policies as long as there are certi�ed analysers to
�nd the relevant information.

• We have illustrated our PCC framework with an interval-based analysis but
the framework is prepared to accommodate more precise relational analyses
such as e.g., octagon-based analyses [18] as implemented in the industrial
strength C program analyser Astree [12]. An interesting, concrete illustra-
tion of how optimised and certi�ed analysers co-exist in our framework
would be to use the highly optimised (but non-certi�ed) abstract domains
of Astree for building certi�cates that would then be checked by a checker
built from a certi�ed but non-optimised octagon byte code analyser.
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A Constraint rules for the byte code interval analysis
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l][x 7→ v] denotes the abstract local variables where value of variable x as been
updated to v. s][x 7→ v] denotes the stack of expressions where all occurrences
of (varx) has been replaced by v.
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