
Modular proof principles for parameterised
concretizations

David Pichardie

IRISA / ENS Cachan (Bretagne)
IRISA, Campus de Beaulieu

F-35042 Rennes, France
david.pichardie@irisa.fr

Abstract. Abstract interpretation is a particularly well-suited method-
ology to build modular correctness proof of static analysers. Proof mod-
ularity becomes essential when correctness proof is machine checked for
realistic languages To deal with complex concrete and abstract domains,
the notion of parameterised concretization has been proposed to allow a
structural decomposition of the abstract domain and its concretization.
In this paper we develop proof principles for such concretizations, based
on the theoretical notion of concretization functor, with the aim of ob-
taining modular correctness proofs. Our technique has been tested on
a machine-checked correctness proof of a static analysis for a Java-like
bytecode language.

1 Introduction

Machine-assisted deductive methods improve the reliability of analysers, by pro-
viding machine-checked correctness proofs from which implementations of anal-
ysers are automatically extracted. The feasibility of the approach was demon-
strated in a previous paper [3], but the human cost of such a work remains a
major drawback to develop a large number of such certified static analysers. In
[3], a first basis of a generic framework for proving and extracting static analysers
in the Coq [5] proof assistant was proposed but this reusable part was mainly
dedicated to the specification of the analysis and the extraction of the analyser.
The correctness proof of the abstract semantic with respect to the standard se-
mantics was done in an ad hoc fashion due to a lack of methodology. This paper
aims at improving this point by proposing proof techniques that allow to mod-
ularise such proofs. The technical concept underlying these techniques is that of
parameterised concretization functions.

Abstract interpretation proposes a rich mathematical framework for conduct-
ing such correctness proofs of static analysers. It is particularly well-suited to
propose modular and generic construction usable for several analyses and pro-
gramming languages. It is then a very promising tool when dealing with machine
checked proof. In this context proof are done in-extenso with a high level of de-
tail. The global architecture of the proof becomes then a critical point, specially
when dealing with static analysis of ”real” languages.

A simple example of modular technique is the abstraction product. To ab-
stract a concrete domain of the form P(C × D) a simple modular approach is
to split the proof into two distinct parts : an abstract domain C] to abstract
P(C) (using a monotone concretization function γC ∈ C] → P(C)) and an
abstract domain D] to abstract P(D) (using γD ∈ D] → P(D)). Each ab-
straction can then be developed and proved correct forgetting the other. Global
abstraction is then done on the product domain C] ×D] with a concretization
γ ∈ C] ×D] → P(C ×D) defined by

∀(c], d]) ∈ C] ×D], γ
(
c], d]

)
=

{
(c, d)

∣∣∣∣ c ∈ γC(c])
d ∈ γD(d])

}
This technique is particularly tempting for a real language like Java bytecode
whose memory space looks like Heap×Static Heap×Operand Stack×Local Variable.
In this setting, this technique allows to split the proof effort into four indepen-
dent parts. Unfortunately this modular technique restricts enormously the power
of the abstraction usable because it necessarily forgets any relation on C × D.
On the other side, full relational abstractions compute properties on C ×D but
are difficult to modularize. In this paper we study a restricted class of relational
abstraction, called parameterised, where a concretization function can be param-
eterised by a concrete element. For example, for the analysis of heap structure,
the concretization for reference sometimes only makes sense in the context of a
concrete heap. At the global abstraction level, the concretization is then of the
form

∀(c], d]) ∈ C] ×D], γ
(
c], d]

)
=

{
(c, d)

∣∣∣∣ c ∈ γC(c])
d ∈ γD

c (d])

}
As we will see in Section 4, this dependence of γD with respect to C is one
obstacle for proof modularity. The main contribution of this paper is to pro-
pose a modular proof technique compatible with parameterised concretization.
This proof technique is based on a natural notion of concretization functor. The
technique requires some restriction on the used abstraction but we have nev-
ertheless been able to experiment it on a realistic representation of bytecode
language with two non-trivial abstractions dynamical allocated values: abstrac-
tion by class and abstraction by creation site. The whole proof of a generic static
analysis has been machine-checked using this technique. The Coq source of de-
velopment are available on-line at http://www.irisa.fr/lande/pichardie/
CarmelCoq/Cassis05/main.html.

Plan of the paper. Our machine-checked proof concerns a language similar to
the Java byte code, named Carmel, presented in Section 2. In Section 3, we
present classic modular constructions which appear to be difficult to use with
concretization functions (presented in Section 4). We then propose a notion of
concretization functor in Section 5 and shows it modularity capabilities. The
machine-checked proof is briefly described in Section 6. Section 7 presents the
relative work and Section 8 concludes.

http://www.irisa.fr/lande/pichardie/CarmelCoq/Cassis05/main.html
http://www.irisa.fr/lande/pichardie/CarmelCoq/Cassis05/main.html

Notations and prerequisites. We write :: for the list concatenation symbol, A+

represents the set of non empty sequences of elements in a set A, →m denotes
the monotone functions constructor and ⇀ the partial function constructor. The
pointed notation on order symbol (v̇) represents the associated point-wise exten-
sion of the order (f1v̇f2

def⇐⇒ ∀x, f1(x) v f2(x)). We assume basic knowledge
of abstract interpretation [8] concepts such as concretization function and partial
trace semantics.

2 Target case study

The notion of parameterised concretization functions is not linked to a particular
programming language or abstraction, but we have chosen to present our results
in the concrete setting of a representative subset of the Carmel language [10,3].
The language is a bytecode for a stack-oriented machine, much like the Java Card
bytecode. We concentrate here on the intraprocedural fragment with instructions
about stack operations, numeric operations, conditionals, object creation and
modification. We leave out method calls which are not needed to explain our
results and which would only complicate the presentation. Thus, the role of
objects are reduced to dynamically allocated records. Nevertheless, the semantic
domain includes a heap and an environment and is sufficiently complex to test
our proof modularization technique. In this setting, a program is composed of a
list of class declaration and a list of bytecode attached to program points.

Val = N + Reference + {null}
LocalVar = Var ⇀ Val Stack = Val∗

Object = ClassName× (FieldName ⇀ Val) Heap = Reference ⇀ Object
State = ProgPoint×Heap× LocalVar× Stack

Fig. 1. Carmel semantic domains

The language is given a small-step operational semantics manipulating states
of the form 〈〈pc, h, l, s〉〉, where pc is a program point, h a heap of objects, l a
set of local variables, and s a local operand stack (see [15] or [4] for details).
Formal definitions of the semantic domains are given in Figure 1 and the differ-
ent semantic rules are presented in Figure 2. We write s1 →i s2 if s2 is the new
state resulting from the execution of instruction i in state s1. The values we ma-
nipulate are either integers or memory references. We let n ranges over integers
and loc over references. The instruction numop is parameterised by an operator
name op (addition, multiplication, ...) whose semantics is given by [[op]]. The
value stored in the local variable x is represented by l[x] (see instruction load).
l[x 7→ v] assigns the variable x to the value v and leaves the others values in l
unchanged (similar notations are used for heaps and objects). Two rules define
the if instruction behavior according to the first value of the current operand

stack. The last three instructions deal with object manipulation. The function
newObject computes, for a class name cl and a heap h, a new memory reference
loc where a new object def(cl) of class cl will be stored. The notation o.f repre-
sents the access to a field f in the class instance o (f should be a declared field
of the class of o, see condition f ∈ definedFields(class(o))).

〈〈pc, h, l, s〉〉 →nop 〈〈pc + 1, h, l, s〉〉 〈〈pc, h, l, v :: s〉〉 →pop 〈〈pc + 1, h, l, s〉〉

〈〈pc, h, l, s〉〉 →push n 〈〈pc + 1, h, l, n :: s〉〉 〈〈pc, h, l, s〉〉 →goto pc′ 〈〈pc′, h, l, s〉〉

〈〈pc, h, l, n1 :: n2 :: s〉〉 →numop op 〈〈pc + 1, h, l, [[op]](n1, n2) :: s〉〉

〈〈pc, h, l, s〉〉 →load x 〈〈pc + 1, h, l, l[x] :: s〉〉

〈〈pc, h, l, v :: s〉〉 →store x 〈〈pc + 1, h, l[x 7→ v], s〉〉
〈〈pc, h, l, n :: s〉〉 →if pc′ 〈〈pc + 1, h, l, s〉〉

when n = 0
〈〈pc, h, l, n :: s〉〉 →if pc′ 〈〈pc′, h, l, s〉〉

when n 6= 0

〈〈pc, h, l, s〉〉 →new cl 〈〈pc + 1, h[loc 7→ def(cl)], l, loc :: s〉〉
when ∃c ∈ classes(P) with ClassName(c) = cl and

loc = newObject(cl, h)

〈〈pc, h, l, v :: loc :: s〉〉 →putfield f 〈〈pc + 1, h[loc 7→ o′], l, s〉〉
when h(loc) = o, f ∈ definedFields(class(o)) and o′ = o[f 7→ v]

〈〈pc, h, l, loc :: s〉〉 →getfield f 〈〈pc + 1, h, l, o.f :: s〉〉
when h(loc) = o and f ∈ definedFields(class(o))

Fig. 2. Operational semantic rules of Carmel

The partial trace semantics [[P]] of a Carmel program P is defined as the set
of reachable partial traces:

[[P]] =
{

s0s1 · · · sn ∈ State+

∣∣∣∣ s0 ∈ Sinit ∧
∀k < n, ∃i, sk →i sk+1

}
∈ P(State+)

where Sinit is the set of initial states.
The goal of the analysis is to compute an approximation of [[P]] for any

given program P . The approximation lives in an abstract domain D] with a
poset structure

(
D],v

)
. The correctness1 of the approximation is specified by

a monotone concretization function γ belonging to
(
D],v

)
→m (P(D),⊆). All

these elements form what we called a connection (in reference to Galois con-
nections whose abstraction function is nevertheless not explicitly used in this
paper). We note such a connection (P(D),⊆)

γ←−
(
D],v

)
.

For simplicity, the example taken in Section 3, 4 and 5 will not be directly
related to Carmel. They will nevertheless be inspired by the analysis effectively
proved in Coq and presented in Section 6.
1 The result [[P]]] of the analysis is then said correct if its concretisation is a conse-

quence of the property [[P]]: [[P]] ⊆ γ
`
[[P]]]

´

3 Modular construction of connection

The theory of abstract interpretation explains how to compose connections in
order to build new connections from old. A classical example of such a con-
struction is the abstraction of variable environments (partial maps from variable
names to value designed here by the set Env) which can be constructed for any
abstraction of values.

Definition 1. (Generic environment connection) A generic environment

connection is a functional which maps a connection (P(Val),⊆)
γVal

←−−
(
Val],vVal]

)
to a 5-tuple

(
Env],vEnv] , γEnv, get], subst]

)
with

–
(
Env],vEnv]

)
is a partially ordered set,

– γEnv ∈
(
Env],vEnv]

)
→m (P(Env),⊆) is a monotone concretization func-

tion between Env] and the set of environments,
– get] ∈ Env] × Var → Val] is a correct approximation of the function giving

the value attached with each variable

∀ρ] ∈ Env], ∀x ∈ Var,
{
ρ(x)

∣∣ ρ ∈ γEnv(ρ])
}
⊆ γVal(get](ρ], x))

– subst] ∈ Env]×Var×Val] → Env] is a correct approximation of the function
which substitutes a value with an other one in a variable

∀ρ] ∈ Env], ∀x ∈ Var, ∀v] ∈ Val],{
ρ[x 7→ v]

∣∣∣∣ ρ ∈ γEnv(ρ])
v ∈ γVal(v])

}
⊆ γEnv(subst](ρ], x, v]))

Hence a generic environment connection constructs an abstract domain, a con-
cretization function and two correct approximations of the primitive function for
manipulating environments, given a connection for abstracting values.

An example of such connection constructor is given by the classical non-
relational abstraction.

Lemma 1. The functional which associates with all connection (P(Val),⊆)
γVal

←−−(
Val],vVal]

)
the 5-upplet

(
Env],vEnv] , γEnv, get], subst]

)
with

– Env] = Var→ Val]

– vEnv]= v̇Val

– ∀ρ] ∈ Env], γEnv(ρ]) =
{
ρ

∣∣ ∀x ∈ Var, ρ(x) ∈ γVal(ρ](x))
}

– ∀ρ] ∈ Env], ∀x ∈ Var, get](ρ], x) = ρ](x)
– ∀ρ] ∈ Env], ∀x ∈ Var, ∀v] ∈ Val], subst](ρ], x, v]) = ρ][x 7→ v]]

is a generic environment connection.

This lemma expresses that the non-relational abstraction of environments
can be constructed for any abstraction of values. Hence, several value abstrac-
tions can be used without having to redo any proof about abstract environments.
This is a crucial point for the proof effort required by a proof assistant. Generic
connections have an additional advantage when working with a proof assistant:
during construction, the value abstraction is opaque and hence the proof is sim-
pler, only focusing on environment manipulations. It is thus particularly conve-
nient to use such generic constructors in machine-checked proofs. Unfortunately
they are difficult to use for more sophisticated value abtractions. In particular,
analyses of the heap structure (or the memory) of dynamically allocated data
structures (references, cells, objects, ...) can require other form of connections.

Example 1. If all values in the language are references on dynamically allocated
object in a heap, an abstraction of these references by the set of class names of
the associated objects only makes sense in the context of a concrete heap.

∀s ∈ P(Class),
γ(s) =

{
(h, loc)

∣∣ loc ∈ dom(h) ∧ class(h(loc)) ∈ s
}
⊆ Heap×Val

with Heap and Object defined as for Carmel semantic domains.
This kind of concretization is generally written in a nicer, parameterised form

∀h ∈ Heap, ∀s ∈ P(Class),
γh(s) =

{
loc

∣∣ loc ∈ dom(h) ∧ class(h(loc)) ∈ s
}
⊆ Val

We will now formally define this kind of concretization and show how we can
use them during correctness proofs.

4 Parameterised concretization

The concretization function we study here depends on a context. Each abstract
value is concretized into a relation between a concrete value and a context ele-
ment, where the context element is necessary to give a non-trivial concretization
of the abstract element. We are hence interested in connections of the following
form

(P(C ×D),⊆)
γ←− (D],v)

with C the context domain. Some examples:

Example 2. The same kind of concretization as in example 1 can be used to
abstract references by the super-class of all objects they refer (this is the ab-
straction taken in the Java bytecode verifier).

∀τ ∈ Class,
γ(τ) =

{
(h, loc)

∣∣ loc ∈ dom(h) ∧ class(h(loc)) ≺P τ
}
⊆ Heap×Val

where ≺P is the subtyping relation associated with the class hierarchy of pro-
gram P .

Example 3. A more precise abstraction than abstraction by set of class names
can be obtained by abstracting with set of creation points [14]. The formal
definition of the concretization function is then relative to a partial execution
trace.

As in Carmel semantics, partial trace are a non-empty sequences < pc0,m0 >::
· · · ::< pcn,mn > of states, each state containing a program point pci (taken in
a set ProgPoint) and a memory mi. If the instruction found at a program point
pc is an object creation with class cl (event noted instr(pc) = new cl), a new
address newObject(cl ,m) is allocated in the memory m to stock an object of
class cl inside.

The associated concretization is

∀s ∈ P(ProgPoint),

γ(s) =

(< pc0,m0 >:: · · · ::< pcn,mn >, loc)

∣∣∣∣∣∣∣∣
∃k ∈ {0, . . . , n},

pck ∈ s
instr(pck) = new cl
newObject(cl ,mk) = loc


End of examples.

This kind of concretization can be represented under an equivalent param-
eterised form. We will note γparam the function of C → D] → P(D) defined
by

∀c ∈ C, ∀d] ∈ D], γparam
c (d]) = {d | (c, d) ∈ γ(d])}

Most of the time, we will omit the ·param notation because the context will allow
us to do it without ambiguity.

4.1 Using generic connections with parameterised concretization

When fixing an element c ∈ C in the context, we can treat γc as a concretization
in

(
D],v

)
→m (P(D),⊆), forgetting the relational view. We are then back to

the application framework of the modular construction exposed in the previous

section: a parameterised concretization (P(Val),⊆)
γVal

c←−−−
(
Val],vVal]

)
(with c a

fixed element in C) can be used to instantiate any generic environment connec-
tion. We obtain a collection of 5-tuple

(
Env],vEnv] , γEnv

c , get], subst]
)

c∈C
with

get] for example verifying

∀c ∈ C, ∀ρ] ∈ Env], ∀x ∈ Var,
{
ρ(x)

∣∣ ρ ∈ γEnv
c (ρ])

}
⊆ γVal

c (get](ρ], x))

A generic environment connection is then able to use a parameterised value
concretization to produce a parameterised environment concretization with its
correct basic operators. Nevertheless, note that the correctness property assured
by these operators are relative to the same context c. As we will see now this will
be a major limitation when proving correctness of abstract transfer functions.

4.2 Proving correctness of abstract transfer functions

The difficulties with parameterised concretizations become apparent when we
consider proving the correctness of transfer functions (the abstract interpretation
of each byte code). For example, in a language with variables and dynamic
allocations the memory state is of the form Mem def= Heap× Env with Heap def=
Val ⇀ Object, Env def= Var ⇀ Val and Val the domain value, reduced here at
addresses in the heap.

Because the memory is split into two different structures, it is natural to ab-
stract it with two distinct abstract elements. Given a heap connection (P(Heap),⊆
)

γHeap

←−−− (Heap],vHeap) and for the variable environments, let suppose the value
abstraction has required a heap parametrization (as in example 1): the abstrac-
tion is hence of the form(

(P(Env),⊆)
γEnv

h←−−− (Env],vEnv)
)

h∈Heap

The concretization of a couple (h], ρ]) of abstract elements will be

γ
(
h], ρ]

)
=

{
(h, ρ)

∣∣∣∣ h ∈ γHeap(h])
ρ ∈ γEnv

h (ρ])

}
⊆ Heap× Env

Each transfer function will be of the form

F : Heap× Env→ Heap× Env
(h, ρ) 7→ (f(h, ρ), g(h, ρ))

To correctly abstract a transfer function, we have to propose a function F] of
the form

F] : Heap] × Env] → Heap] × Env]

(h], ρ]) 7→
(
f](h], ρ]), g](h], ρ])

)
and verifying the following “classical” correctness criterion

∀(h], ρ]) ∈ Heap] × Env],{
(f(h, ρ), g(h, ρ))

∣∣∣∣ h ∈ γHeap(h])
ρ ∈ γEnv

h (ρ])

}
⊆

{
(h′, ρ′)

∣∣∣∣ h′ ∈ γHeap(f](h], ρ]))
ρ′ ∈ γEnv

h′ (g](h], ρ]))

}
This criterion can be equivalently reduced to the conjunction of two criteria

∀(h], ρ]) ∈ Heap] × Env],
∀(h, ρ) ∈ γHeap(h])× γEnv

h (ρ]), f(h, ρ) ∈ γHeap(f](h], ρ]))
(1)

∀(h], ρ]) ∈ Heap] × Env],
∀(h, ρ) ∈ γHeap(h])× γEnv

h (ρ]), g(h, ρ) ∈ γEnv
f(h,ρ)(g

](h], ρ])) (2)

Contrary to the criterion (1), the criterion (2) is problematic because it contains
two distinct instances γEnv

h and γEnv
f(h,ρ). As we have seen previously, properties

produced by combining generic connections and parameterised concretizations
only contain a single context element. So we can not prove (2) by only combining
this kind of properties.

We can however, reduce the proof of (2) into two sufficient (but not necessary)
conditions, one dealing with f , the other with g:

∀(h], ρ]) ∈ Heap] × Env],
∀(h, ρ) ∈ γHeap(h])× γEnv

h (ρ]), g(h, ρ) ∈ γEnv
h (g](h], ρ]))

(3)

∀(h, ρ) ∈ Heap× Env, γEnv
h ⊆̇ γEnv

f(h,ρ) (4)

The criterion (3) now only contains a single instance γEnv
h of the environment

concretization (contrary to (2)) and is well-suited to be proved by combining
properties given by some generic connection constructors.

The criterion (4) remains nevertheless problematic because like in (2), several
instance of γEnv appear. The next section will be dedicated to this criteria. We
will propose a slight change in the generic environment connection definition
which will allow us to prove (4) in a modular way without making appear a
notion of context in the definition.

5 Concretization functors

The improvement we will make in generic connection definition will be based on
concretization functionals : operators which transform concretizations into other
concretizations.

5.1 Example and definition

An example of such operator has already been seen in lemma 1.

Γ :
((

Val],vVal]

)
→m (P(Val),⊆)

)
→

((
Env],vEnv]

)
→m (P(Env),⊆)

)
γVal 7→ ρ] 7→

{
ρ

∣∣ ∀x ∈ Var, ρ(x) ∈ γ(ρ](x))
}

This kind of operator is under-lying in many generic construction found in the
abstract interpretation literature. A natural condition we could impose on such
operator is monotonie, hence obtaining concretization functors.

Definition 2. (Concretization functor) Given four partially ordered sets
(A,vA),

(
A],vA]

)
, (B,vB) and

(
B],vB]

)
, a concretization functor is an op-

erator Γ taken in
((

A],vA]

)
→m (A,vA)

)
→

((
B],vB]

)
→m (B,vB)

)
which

verifies the monotonicity property:

∀γ1, γ2 ∈
((

A],vA]

)
→m (A,vA)

)
, γ1 v̇A γ2 ⇒ Γ (γ1) v̇B Γ (γ2)

A concretization functor is hence preserving relative precision between con-
cretizations. This monotony property appears to be very natural and satisfied

by many concretization operators found in the literature (see the generic con-
struction of weak relational environment in [11] for a good example). As far a
we know this property has never been explicitly used or noticed.

This notion will now be integrated in a new definition of generic environment
connection.

Definition 3. (Revisited generic environment connection) A generic en-
vironment connection is a functional which associates to any partially ordered
set

(
Val],vVal]

)
a 5-tuple

(
Env],vEnv] , ΓEnv, get], subst]

)
where

–
(
Env],vEnv]

)
is a partially ordered set,

– Γ ∈
((

Val],vVal]

)
→m (P(Val),⊆)

)
→

((
Env],vEnv]

)
→m (P(Var→ Val),⊆)

)
is a concretization functor,

– get] ∈ Env] × Var → Val] is a correct approximation of the function giving
the value attached with each variable

∀γ ∈
(
Val],vVal]

)
→m (P(Val),⊆) ,

∀ρ] ∈ Env], ∀x ∈ Var,
{
ρ(x)

∣∣ ρ ∈ ΓEnv (γ) (ρ])
}
⊆ γ(get](ρ], x))

– subst] ∈ Env]×Var×Val] → Env] is a correct approximation of the function
which substitute a value with an other one in a variable

∀γ ∈
(
Val],vVal]

)
→m (P(Val),⊆) ,

∀ρ] ∈ ρ], ∀x ∈ Var, ∀v] ∈ Val],{
ρ[x 7→ v]

∣∣∣∣ ρ ∈ ΓEnv (γ) (ρ])
v ∈ γ(v])

}
⊆ ΓEnv (γ) (subst](ρ], x, v]))

The modification used here is made at the level of the concretization function
which is no more fixed but now parameterised by any value concretization. Con-
cerning primitive abstract operators get] and subst], the quantification made on
all value concretization does not require more proofs than in the previous defi-
nition because γVal was already anonymous (ie. its definition was not necessary
to build the proof). We can hence affirm that this new definition is not more
restrictive or specialized than the previous: only the monotonicity property of
Γ has been added and it is a very natural property which do not restrict the
generic construction we can use.

We will now explain why these generic connections enable us to prove (4) in
a modular fashion.

5.2 Using the functorial property in proof

With our new definition of generic environment connection, the concretization
γEnv used in the example of Section 4 is now of the form

γEnv = ΓEnv
(
γVal

)
Hence the criterion (4) can now be reduced to a property on γVal.

Lemma 2. If γEnv = ΓEnv
(
γVal

)
with ΓEnv a concretization functor, then the

criterion

∀(h, ρ) ∈ Heap× Env, γVal
h ⊆̇ γVal

f(h,ρ) (5)

implies
∀(h, ρ) ∈ Heap× Env, γEnv

h ⊆̇ γEnv
f(h,ρ)

Proof. It is a direct consequence of the monotony property of ΓEnv.

The remaining proof condition (5) is thus structurally smaller: it now deals
with value abstraction. It can be seen has a conservative requirement. The con-
cretization associated with the transformation of the heap h should contain all
the properties of the original one. It is a strong property but the generic connec-
tion definition allow us to move it at the level of the value connection without
sacrificing the genericity of the environment connection.

It remains us to explain how such proof can be managed at the level of the
value abstraction.

5.3 Establishing the conservative requirement

In the context of a full correctness proof there will be as many proof condition
like (5) as functions f encountered in the different transfer functions of the
language. We propose to factorize these proofs by cutting such conditions into
two new conditions. This cut is done by introducing a well-chosen pre-order on
the context domain.

We will need to introduce a notion of monotone parameterised concretization.

Definition 4. (monotone parameterised concretization) Given a pre-order
relation �C ⊆ C×C on a set C, a parameterised concretization γ ∈ C → D] →
P(D) is monotonously parameterised with respect to �C if

∀(c1, c2) ∈ C2, c1 �C c2 ⇒ γc1 ⊆̇ γc2

Lemma 3. Let S ⊆ (Heap× Env) → Heap be a set of function. Let γVal be a
parameterised value concretization and �Heap a pre-order on Heap. If

γVal is monotone with respect to �Heap (6)

and

∀f ∈ S, ∀(h, ρ) ∈ Heap× Env, h �Heap f(h, ρ) (7)

then
∀f ∈ S, ∀(h, ρ) ∈ Heap× Env, γVal

h ⊆̇ γVal
f(h,ρ)

As we explained before, this proof method is not applicable for all parameterised
value concretization. The main restriction is on the existence of a well-suited pre-
order on context domain.

This existence is nevertheless ensured in all the non trivial examples we gave
previously in Section 3 and 4:

– For example 1, we can take

�Heap=
{

(h1, h2)
∣∣∣∣ dom(h1) ⊆ dom(h2)
∀loc ∈ dom(h1), class(h1(loc)) = class(h2(loc))

}
The value concretization chosen in this example is then monotone with re-
spect to this pre-order because if h1 and h2 are heap verifying h1 �Heap

h2, if loc belongs to γh1(s) then loc ∈ dom(h1) and class(h1(loc)) ∈ s.
But dom(h1) ⊆ dom(h2), so loc ∈ dom(h2) and because class(h1(loc)) =
class(h2(loc)), we can affirm that class(h2(loc)) ∈ s. We then have demon-
strated that loc ∈ γh2(s).
The property 7 will be verified by any transfer function which does not
remove objects in the heap, neither modify their class. It is effectively the
case for all transfer function of programming language like Java or bytecode
Java without dealing with garbage collector2.

– The same pre-order as before can be used to deal with example 2.
– For example 3, the context is no more a heap but a partial trace. The relation
�Trace is thus sufficient :

�Trace= {(tr1, tr2) | tr1 is a prefix of tr2 }

Indeed, if tr1 is a partial trace prefix of a partial trace tr2, all allocations
made in tr1 appear in tr2. Thus the monotonicity of γVal with respect to
�Trace is proved.
For the criterion 7, we only have to verify that all transfer function only put
new states on previous partial trace, which is indeed the case.

5.4 Summarizing the proof method

We now summarize our proof method for establishing the correctness of the
function F] with respect to F (example taken in Subsection 4.2)

– The correctness criterion is split into two equivalent criteria (1) and (2).
(1) leads to modular proofs because it relies on the same parameterised
concretization, but (2) is not.

– The criterion (2) is then split into two sufficient criteria (3) and (4). (3) is
provable using generic connection constructions.

– To establish (4) we introduce a notion of concretization functor and a well
chosen pre-order. (4) is hence split into criteria (6) and (7). (6) only deal
with the abstraction made on values. (7) is a proof about the semantic of
the language.

2 Dealing with garbage collection could be done by restricting value to accessible values
from the variable in the environment. It would certainly complicate the proof and
we have not yet explored this eventuality.

6 Modular Machine checked proof of a bytecode analyser

This proof technique has been experimented for proving the correctness of a
generic Carmel static analyser. This analysis computes a state invariant for each
program point. The abstract state is thus of the form

State] = ProgPoint→
(
Heap] × LocalVar] × Stack]

)
with Heap], LocalVar] and Stack] generic abstract domains for heap, local vari-
ables and operand stack abstraction.

The generic static analyser is parameterised by five generic connections (for
values, operand stacks, local variables, objects and heaps) and two base abstrac-
tions (a parameterised one for locations and a classical simple one for integers).
Figure 3 shows the Coq interface definition for the operand stack. The interface
is parameterised by a lattice structure PV on a set V (the lattice of abstract
values). The interface contains 12 elements. First, the set t of abstract stacks,
the lattice structure Pos on t, and the concretization functor gamma which takes
concretization between P(Val) and PV and returns a concretization between
P(Stack) and Pos. The monotonicity property of gamma is required by the field
gamma monotone. At last, nil ab, pop ab, top ab and push ab are four basic ab-
stract operators of the stack domain with their corresponding correctness prop-
erties. (Post pop op) represents the post operator applied on the relation pop op.
This interface and the others (for local variables, objects, ...) are collected in the
file AlgebraType available on-line for the interested reader.

Record OperandStackConnection (V:Set) (PV:Lattice V) : Type := {
t : Set;
Pos : Lattice t;
gamma : Gamma (PowPoset Value) PV → Gamma (PowPoset OperandStack) Pos;
gamma monotone : ∀g1 g2,

orderGamma g1 g2 → orderGamma (gamma g1) (gamma g2);

nil ab : t;
nil ab correct : ∀g, (λs. s = nil) ⊆ (gamma g nil ab);

pop ab : t → t;
pop ab correct : ∀g s, ((Post pop op) (gamma g s)) ⊆ (gamma g (pop ab s));

top ab : t → V;
top ab correct : ∀g s, ((Post top op) (gamma g s)) ⊆ (g (top ab s));

push ab : V → t → t;
push ab correct : ∀g v s, ((Post2 push op) (g v) (gamma g s))⊆ (gamma g (push ab v s))
}.

Fig. 3. Operand Stack connection interface

http://www.irisa.fr/lande/pichardie/CarmelCoq/Cassis05/AlgebraType.html

The correctness of the analysis is established for any correct integer, refer-
ence, value, operand stack, local variables, object and heap connection. We have
implemented various instanciations of the different interfaces

– integers : abstraction by type (only one element in the abstract domain) and
constant abstraction (using Kildall’s lattice),

– references : abstraction by class (example 1) and abstraction by creation
point (example 2),

– values : abstraction by sum of the reference and the numeric abstraction with
two possibilities for the representation of the null constant (represented by
the bottom element or by a specific abstract object)

– stacks, local variables, objects : structural abstraction (structure is pre-
served) or one abstract value to abstract all the elements of the data

– heaps : only one instantiation parameterised by any object abstraction and
reference abstraction (with some restriction on the lattice used for references)

Compared with the previous proof done in [3], we have made two important
improvements. First, the proof is now modular and abstractions on semantic sub-
domains can be changed without redoing all the global proof : this is important
for incremental development and maintaining of the proof. Second, each sub-
domain abstraction is generic and independent from the others abstractions,
which helps considerably during the proof development by splitting the global
proof into several simpler proofs.

7 Related works

In a previous paper [3], we have shown how to formalise a constraint-based
data flow analysis in the specification language of the Coq proof assistant. We
proposed a library of lattice functors for modular construction of complex ab-
stract domains. Constraints were expressed in an intermediate representation
that allowed for both efficient constraint resolution and correctness proof of the
analysis with respect to an operational semantics. The proof of existence of a cor-
rect, minimal solution to the constraints was constructive which means that the
extraction mechanism of Coq provided a provably correct data flow analyser in
Ocaml[12]. The library of lattices together with the intermediate representation
of constraints were defined in an analysis-independent fashion that provides a
basis for a generic framework for proving and extracting static analysers in Coq.
Nevertheless, no specific methodology was proposed to handle the correctness
proof of the abstract semantic with respect to the standard semantics.

The majority of mechanical verifications of program analyses have dealt with
the Java byte code verifier. Bertot [2] used the Coq system to extract a certi-
fied bytecode analyser specialized for object initialization. Barthe et al. [1] have
shown how to formalise the Java Card byte code verification in the proof assis-
tant Coq by isolating the byte code verification in an executable semantics of the
language. Klein and Nipkow [9] have proved the correctness of a Java byte code
verifier using the proof assistant Isabelle/HOL. All these works do not rely on

a general theory of static analysis like abstract interpretation, and are oriented
towards type verification.

The notion of parameterised concretization function has been implicit in
several works and was made explicit in the thesis of Isabelle Pollet [13]. In this
work, abstract interpretation of Java program are presented with the help of
parameterised concretization functions which are used to relate concrete and
abstract values with respect to a relation between locations. However, to the
best of our knowledge, no one has identified the functor property presented here
which is essential for the modularization and mechanization of the proofs.

Concerning proof modularity, only a few works propose a modular approach
similar to us. The main reason is that research papers rarely deal with a deep
hierarchy of semantic domains. In our context, splitting the proof development
following the semantic hierarchy was useful, especially to machine-checked the
proof. Much works are dedicated to propose one single powerful construction
of abstract domain parameterised by some base domain, see for example works
of Miné [11] or Cortesi and al [6]. But base abstractions are not parameterised
(because the target analyses do not need this notion) and thus they did not
encounter the same technical problem as us. In [13] several generic connection
constructors are given to analyse heap structure and a common interface is pro-
posed. Nevertheless this interface makes an explicit use of the parameter : what
we try to avoid with our notion of concretization functor. But the proposed con-
structor allow more powerful analyses than those we implement in Coq. A last
interesting related work can be found in the course note of Patrick Cousot [7]
where the abstract interpreter construction is modularized following each seman-
tic sub-domain. But once again, no parameterised abstraction is used then our
functor notion is not required.

8 Conclusion

Mechanised correctness proofs of static analyses for realistic programming lan-
guages requires proof principles for simplifying the proof development. Like in
other software engineering activities, modular correctness proofs are desirable
because they are easier to develop and to maintain. We observe that one obsta-
cle to modularity is the complexity of concrete states chich are built from many
apparently inter-related components. The abstract domain has to reflect these
relations but using a full-fledged abstract domain with standard (relational)
concretizations leads to proofs with poor modular structure. In this paper we
have shown how parameterised concretization functions forms a basis for proof
principles that allow to capture the necessary relational information while using
concretization functions as if we were working with non-relational domains.

To arrive at these proof principles, we have extended the theory of parame-
terised concretizations with the key notion of concretization functors that make
explicit the compositional way in which concretization functions for complex
domains are constructed from concretization of their simpler constituents. We
have formulated and proved an important property of concretization functors

that shows how a properly chosen pre-order on the concrete domains can greatly
simplify the correctness proof for a large class of transfer functions.

The motivation for these theoretical developments came from a mechanised
correctness proof for a generic static analysis for stack-based byte code language
with memory allocation (similar to Java Card). As argued in Section 6 the proof
principles have demonstrated their practical value by reducing the proof effort
considerably. We tested this genericity by instantiating the abstract domain for
memory references with two well-known abstractions while keeping the rest of
the abstract state fixed. This was a non-trivial task because these reference
abstraction use distinct parameterisations.

We now dispose of a proof technique which allows to certify complex static
analysis for real languages in a reasonable time. A further work could be to
achieve such an analysis for a byte code languages with all the features of the
Java Card languages (exception, array, virtual calls). Propose certified analyser
implementation without loosing efficiency require still works when dealing with
complex abstraction.

References

1. Gilles Barthe, Guillaume Dufay, Line Jakubiec, Bernard Serpette, and Simão Melo
de Sousa. A Formal Executable Semantics of the JavaCard Platform. In
Proc. ESOP’01, number 2028 in Lecture Notes in Computer Science. Springer-
Verlag, 2001.

2. Yves Bertot. Formalizing a JVML Verifier for Initialization in a Theorem Prover.
In Proc. CAV’01, number 2102 in Lecture Notes in Computer Science. Springer-
Verlag, 2001.

3. David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. Extracting a
Data Flow Analyser in Constructive Logic. In Proc. ESOP’04, number 2986 in
Lecture Notes in Computer Science, pages 385–400. Springer-Verlag, 2004.

4. David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. Extracting
a Data Flow Analyser in Constructive Logic. Theoretical Computer Science,
342(1):56–78, September 2005. Extended version of [3].

5. The Coq Proof Assistant. http://coq.inria.fr/.
6. Agostino Cortesi, Baudouin Le Charlier, and Pascal Van Hentenryck. Combina-

tions of abstract domains for logic programming. In POPL, pages 227–239, 1994.
7. P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy

and R. Steinbrüggen, editors, Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

8. Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511–547, 1992.

9. Gerwin Klein and Tobias Nipkow. Verified Bytecode Verifiers. Theoretical Com-
puter Science, 298(3):583–626, 2002.

10. Renaud Marlet. Syntax of the JCVM language to be studied in the SecSafe project.
Technical Report SECSAFE-TL-005, Trusted Logic SA, May 2001.

11. A. Miné. A few graph-based relational numerical abstract domains. In SAS’02,
volume 2477 of LNCS, pages 117–132. Springer-Verlag, 2002.

12. The Objective Caml language. http://caml.inria.fr/.
13. Isabelle Pollet. Towards a generic framework for the abstract interpretation of

Java. PhD thesis, Université catholique de Louvain, Belgium, 2004.
14. Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis for Java

using cnnoted constraints. In OOPSLA, pages 43–55, 2001.
15. Igor Siveroni. Operational semantics of the Java Card Virtual Machine. J. Logic

and Automated Reasoning, 2004. To appear.

	Modular proof principles for parameterised concretizations
	David Pichardie

